ENTRAUCHUNGS-SYSTEME PICHLER

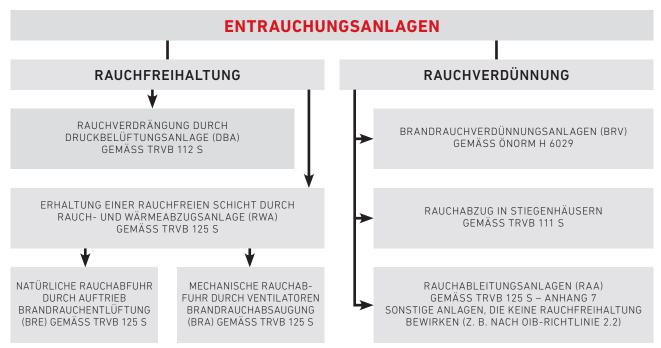
Lüftung mit System.

Inhaltsverzeichnis

1. PICHLER ENTRAUCHUNGSSYSTEME	03	5.6. Entrauchungsklappe ERLK(ER)-multi	24
2. NORMEN & RICHTLINIEN		5.6.1. Aufbauskizze Entrauchungsklappe	
3. RAUCH- UND WÄRMEABZUGSANLAGEN (RWA	06 (ERLK(ER)-multi	25
3.1. Anforderungen an Ventilatoren:		5.7. Brandrauch-Steuerklappe	26
Temperaturklasse	06	5.8. Steuerungstechnik	26
3.2. Steuerung	06	5.8.1. Schaltschrank Druckbelüftung (DBA)	0./
3.3. Brandrauchentlüftung (BRE)	07	Aufenthaltskonzept	26
3.4. Brandrauchabsaugung (BRA)	07	6. SCHLEUSENBELÜFTUNGSSYSTEME	28
3.5. Brandrauchverdünnung (BRV)	07	6.1. Auslegunskriterien	29
3.6. Schleusenbelüftung	07	6.1.1. Zuluftkriterien	29
3.7. Rauchabzug in Stiegenhäusern TRVB 111 S	07	6.1.2. Abluftkriterien	29
4. DRUCKBELÜFTUNGSANLAGEN (DBA)	09	6.2. Normen und Richtlinien	29
4.1. Systemklassen gemäß TRVB 112 S	09	6.3. Schleusenbelüftung SBB-Kompakt	30
4.2. Aufenthaltskonzept	10	6.3.1. Luftleistungskennlinie	30
4.3. Funktionsweise	11	6.3.2. Technische Daten	30
4.4. Schutzziel	11	6.3.3. Zubehör	30
4.5. Planung der Zuluft-Einbringung und der	•••	6.3.4. Schematischer Aufbau Schleusenbelüftung	31
Abströmwege	13	SBB-Kompakt	31
4.6. Einhaltung der erforderlichen Druck-		6.3.5. Komponenten	31
und Strömungskriterien sowie der		6.3.6. Anwendungsbeispiel	32
Türöffnungskräfte	13	6.4. Schleusenbelüftung Konventionell	32
4.6.1. Strömungskriterium (SK)	13	6.4.1. Technische Daten Steuerung	
4.6.2. Druckkriterium (DK)	13	6.4.2. Zubehör	32
4.6.3. Türöffnungskraft	13	6.4.3. Schematischer Aufbau Schleusenbelüftung Konventionell	33
4.6.4. Ermittlung der erforderlichen Luftmengen	10	6.4.4. Komponenten	33
für das Druck- und Strömungskriterium	13	6.4.5. Anwendungsbeispiel	33
5. ÜBERSICHTSSCHEMA – PRODUKTPROGRAMM	14	6.5. Pichler Überstromdurchführung PUEDLRK	34
5.1. Ventilatoren	16	6.5.1. Produktbeschreibung	34
5.1.1. Axialventilatoren	16	6.5.2. Spezifikation Brandschutzklappe	34
5.1.2. Brandgas-Dachventilatoren	16	6.5.3. Spezifikation Kaltrauchsperre	34
5.2. Zuluftanlagen	17	7. CO-WARNANLAGEN	37
5.2.1. Frischluftklappe	17	7.1. Garagenutzflächen	37
5.2.2. Lüftungsgitter	17	7.2. CO-Schwellwerte	37
5.3. Abströmanlagen	18	7.2.1. 50 ppm CO	37
5.3.1. Natürliche Abströmanlagen	18	7.2.2. 100 ppm CO	37
5.3.2. Maschinelle Abströmanlagen	18	7.2.3. 250 ppm CO	37
5.3.3. Lichtkuppel	18	7.3. Außenteile für CO-Warnanlagen	37
		7.3.1. Messfühler	37
5.3.4. Windwürfel	19	7.3.2. Feuerwehrschalter	38
5.3.5. Glaslamellenfenster	20	7.3.3. Signalhupe und Quittiertaster	38
5.3.6. Motorische Jalousieklappe	21	7.3.4. Warnschilder	38
5.3.7 Motorisch gesteuerte Druckregelklappe	20	7.3.5. Auswertegeräte	38
5.4. Entrauchungs-Leitungssystem Type ERL		7.3.5.1. FRMG1	38
mit rechteckigem Querschnitt für Einzelabschnitte und für horizontale		7.3.5.2. FRMG3	39
Luftleitungsführung	21	7.3.6. Netzersatzanlage	39
5.5. Entrauchungsklappen Kamouflage MP		8. UNSER SERVICE	40
für Druckbelüftungsanlagen	22	9. SIMULATIONS- UND TESTANLAGE	40

1. Pichler Entrauchungssysteme

Nicht die energetischen Kräfte eines Brandes, sondern vielmehr der Brandrauch als Begleitprozess eines Brandereignisses, birgt die größte Gefahr für die Gesundheit des Menschen. Brandrauch ist toxisch, führt zu Sichtbehinderung und erschwert so die notwendige Eigenrettung sowie den Löschangriff der Feuerwehr. Durch moderne Entrauchungskonzepte in Gebäuden können schädigende Wirkungen des Brandrauches begrenzt oder gänzlich ferngehalten werden.


Entrauchungsanlagen dienen im Brandfall in erster Linie der:

- Sicherung der Fluchtwege durch Rauchfreihaltung von Flucht- und Rettungswegen in horizontaler und vertikaler Richtung.
- Begrenzung der Brandausbreitung durch kontrollierte Wärmeableitung
- Unterstützung des aktiven Feuerwehreinsatzes

Jede Form der Entrauchung hat ihre Besonderheiten und erfordert die genaue Betrachtung der berührenden Rahmenbedingungen. Geringe Platzverhältnisse aufgrund baulicher Gegebenheiten sind bei nahezu jedem Bauvorhaben, ob im Neubau oder der Gebäudesanierung, ein wesentlicher Punkt in der Anlagenplanung. Auch komplexere Gebäudegeometrien sowie sämtliche physikalischen Einflüsse oder Wechselwirkungen im gleichzeitigen Betrieb unterschiedlicher Entrauchungsanlagen sind zentrale Faktoren bei der Systemauslegung.

Komplettsysteme für die zuverlässige Entrauchung:

Das Pichler Entrauchungskonzept baut auf jahrzehntelangem Know-how in der Lüftungstechnik auf. Die intensive Zusammenarbeit mit Behörden, Prüfstellen und Instituten sowie die eigens errichtete Pichler-Testanlage für Entrauchungssysteme am Hauptsitz in Klagenfurt, führten zu weiteren innovativen Lösungen in der langen Pichler-Erfolgsgeschichte.

Quelle: TRVB 125 S

CO-WARNANLAGEN

Quelle: ÖNORM M 9419

2. Normen & Richtlinien

Die für die Errichtung und den Betrieb geltenden Anforderungen und Vorschriften sind im Wesentlichen verankert in:

- Gewerbeordnung, ArbeitnehmerInnenschutzgesetz
- Bauordnung
- OIB-Richtlinien und Erläuterungen zur OIB-Richtlinie
- Technische Richtlinien vorbeugender Brandschutz
 - TRVB 125 S Rauch- & Wärmeabzugsanlagen und Rauchableitungsanlagen
 - TRVB 112 S Druckbelüftungsanlagen
 - TRVB 150 S Ergänzende Bestimmungen zur ÖNORM EN 81-72 – Feuerwehraufzüge
 - TRVB 111 S Rauchabzug für Stiegenhäuser
 - TRVB 151 S Brandfallsteuerungen
 - TRVB 123 S Brandmeldeanlagen
- ÖNORMEN
 - ÖNORM EN 12101-3 Rauch- und Wärmefreihaltung Bestimmungen für maschinelle Rauch- und Wärmeabzugsgeräte
 - ÖNORM EN 12101-6 Differenzdrucksysteme-Bausätze
 - ÖNORM EN 12101-7 Rauch- und Wärmefreihaltung Entrauchungsleitungen
 - ÖNORM EN 12101-8 Rauch- und Wärmefreihaltung Entrauchungsklappen

- ÖNORM EN 12101-9 Rauch- und Wärmefreihaltung Steuerungstafeln
- ÖNORM EN 12101-10 Rauch- und Wärmefreihaltung Energieversorgung
- ÖNORM H 6029 Lüftungstechnische Anlagen Brandrauchverdünnungs-Anlagen (BRV-Anlagen)
- ÖNORM H 6031 Lüftungstechnische Anlagen Einbau und Kontrollprüfung von Brandschutzklappen und Brandrauch-Steuerklappen
- ÖNORM F 3001 Brandfallsteuersysteme, die von Brandmeldeanlagen angesteuert werden Ergänzende Bestimmungen zu ÖNORM EN 54-2,
- ÖNORM M 9410 Luftreinhaltung Messtechnik Begriffsbestimmungen und Merkmale von kontinuierlich arbeitenden Konzentrationsmessgeräten für Emissionen und Immissionen
- ÖNORM M 9418 Automatische Konzentrationsmessgeräte für Kohlenstoffmonoxid in Garagen Anforderungen und Prüfung-Normkennzeichnung
- ÖNORM M 9419 Beiblatt 1 Kontinuierliche Überwachung der Kohlenstoffmonoxid-Konzentration in Garagen Prüfbuch für CO-Überwachungsanlagen in Garagen gemäß ÖNORM M 9419

ENTRAUCHUNGSANLAGEN

RAUCHFREIHALTUNG

RAUCHVERDRÄNGUNG DURCH DRUCKBELÜFTUNGSANLAGE (DBA) GEMÄSS TRVB 112 S

ERHALTUNG EINER RAUCHFREIEN SCHICHT DURCH RAUCH- UND WÄRMEABZUGSANLAGE (RWA) GEMÄSS TRVB 125 S

NATÜRLICHE RAUCHABFUHR DURCH AUFTRIEB BRANDRAUCHENTLÜFTUNG (BRE) GEMÄSS TRVB 125 S

N. S. S.

MECHANISCHE RAUCHAB-FUHR DURCH VENTILATOREN BRANDRAUCHABSAUGUNG (BRA) GEMÄSS TRVB 125 S

RAUCHVERDÜNNUNG

BRANDRAUCHVERDÜNNUNGSANLAGEN (BRV) GEMÄSS ÖNORM H 6029

> RAUCHABZUG IN STIEGENHÄUSERN GEMÄSS TRVB 111 S

RAUCHABLEITUNGSANLAGEN (RAA) GEMÄSS TRVB 125 S – ANHANG 7 SONSTIGE ANLAGEN, DIE KEINE RAUCHFREIHALTUNG BEWIRKEN (Z. B. NACH OIB-RICHTLINIE 2.2)

Quelle: TRVB 125 S

CO-WARNANLAGEN

100

Quelle: ÖNORM M 9419

3. Rauch- und Wärmeabzugsanlagen (RWA)

Unter RWA versteht man die Summe aller Einrichtungen, die bestimmungsgemäß dazu dienen, im Brandfall ab einem bestimmten Zeitpunkt den Abzug von Rauch und/oder Wärme in einem derartigen Ausmaß zu bewirken, dass bis zum Erreichen einer festgesetzten Brandfläche eine rauchfreie Schicht festgesetzter Höhe erhalten bleibt.

3.1 ANFORDERUNGEN AN VENTILATOREN: TEMPERATURKLASSE

Folgende Klassifizierungsanforderungen an Ventilatoren gelten bei Absaugung von Rauchgasen oder wenn diese innerhalb des Brandraumes aufgestellt sind.

- Ventilatoren für die Rauchabsaugung aus Stiegenhäusern und Schleusen müssen mindestens der Klassifizierung F200 gemäß ÖNORM EN 12101-3 entsprechen.
- Ventilatoren für die Rauchabsaugung aus Räumen, die durch eine automatische Sprinkleranlage oder eine erweiterte automatische Löschhilfeanlage (EAL) gemäß TRVB S 127 geschützt sind, müssen mindestens der Klassifizierung F300 gemäß ÖNORM EN 12101-3 entsprechen.
- Ventilatoren für die Rauchabsaugung aus Garagen müssen mindestens der Klassifizierung F400 (90) gemäß ÖNORM EN 12101-3 entsprechen.
- Ventilatoren für die Rauchabsaugung aus sonstigen Räumen müssen mindestens der Klassifizierung F600 gemäß ÖNORM EN 12101-3 entsprechen, sofern nicht durch behördliche Auflagen eine geringere oder höhere Klassifizierung als ausreichend bzw. erforderlich fest- gestellt wird.

3.2 STEUERUNG

Entweder durch Erreichen der Auslösetemperatur der jeweiligen selbsttätigen Einzel- oder Sammelauslösung oder durch Handauslösung (durch die Feuerwehr) werden die Lüfter geöffnet und es werden durch den Überdruck in der Rauchschicht bzw. durch die Thermik (aufgrund der Temperaturdifferenz) die Rauchgase durch den Lüfter ins Freie abtransportiert. Um eine möglichst effektive Entrauchung zu gewährleisten, ist es erforderlich, durch die Einsatzkräfte Zuluftöffnungen im bodennahen Bereich herzustellen (Öffnen von Toren und Türen sowie bodennaher Fensteröffnungen).

Die Ansteuerung der Anlage durch eine automatische Brandmeldeanlage bei Auslösung des Alarmzustandes hat gemäß TRVB 151 S zu erfolgen.

Außerdem muss unabhängig von der Stellung allfällig vorhandener Brandrauch-Steuerklappen sichergestellt sein, dass der Ventilator entsprechend dem Brandschutzkonzept, frühestens aber 30 Sekunden nach Ansteuerung der Anlage, eingeschaltet wird. Zusätzlich zur Brandfallsteuerung muss eine Einrichtung zur manuellen Steuerung der Anlage im Feuerwehrangriffsweg, außerhalb des betreffenden Rauchverdünnungsabschnittes, vorhanden und gemäß ÖNORM F 2030 bezeichnet sein. Diese Ansteuerung muss getrennt nach Rauchverdünnungsabschnitten möglich sein.

Die gesamte Stromversorgung der Anlage (Ventilatoren, Klappenstellantriebe etc.) ist als eigener Stromkreis über eine Netzersatz-Stromversorgung sicherzustellen oder die elektrische Anspeisung dieses Stromkreises muss direkt von der Niederspannungs-Hauptverteilung aus erfolgen. Für im Brandfall betriebene Motorwicklungen in Rauchverdünnungsventilatoren ist eine in dieser Wicklung integrierte Motorschutzvorrichtung (z. B. Kaltleiter oder Thermokontakt) nicht zulässig. Gleiches gilt für vorgeschaltete Steuergeräte (Anlaufgeräte, Frequenzumformer etc.).

3.3 BRANDRAUCHENTLÜFTUNG (BRE)

Der Abzug von Rauch und Wärme wird durch natürliche Entlüftung des Brandraumes durch Lüfter infolge des Auftriebs des heißen Brandrauches bewirkt. Bei natürlichen RWA steigen aufgrund der Thermik die heißen Rauchgase bis in den Decken- bzw. Dachbereich auf und bilden dort einen Rauchpolster. Diese Schicht breitet sich unterhalb der Decke/des Daches gleichmäßig nach allen Richtungen aus.

3.4 BRANDRAUCHABSAUGUNG (BRA)

Der Abzug von Rauch und Wärme wird durch Absaugen des heißen Brandrauches mittels Ventilatoren bewirkt.

3.5 BRANDRAUCHVERDÜNNUNG (BRV)

Brandrauchverdünnungsanlagen bewirken, dass

- in der Entstehungsphase des Brandes bzw. nach kurzer Branddauer so viel Rauch abgesaugt und Wärme abgeführt wird, dass ein Feuerwehreinsatz (erforderlichenfalls unter Atemschutz) unter erleichterten Bedingungen möglich ist,
- durch Abfuhr heißer Rauchgase und nachströmende kühlere Außenluft die Temperatur im Brandraum nicht zu rasch ansteigt bzw. abkühlt.
- die thermische Beanspruchung der Gebäudekonstruktion verringert wird.

Gemäß der ÖNORM H 6029 ist für Fluchtwege ein

30-facher stündlicher Luftwechsel und für alle sonstigen Räume grundsätzlich ein 12-facher stündlicher Luftwechsel erforderlich.
Zur Sicherstellung des geforderten Luftwechsels muss ein dem abgesaugten Volumenstrom adäquater Außenluft-Volumenstrom über Luftnachström-Öffnungen dem Rauchverdünnungsabschnitt zugeführt werden. Dabei dürfen keine Druckdifferenzen entstehen, durch welche die Öffnungskraft an Türgriffen 100 N übersteigt. Kann dies nicht sichergestellt werden, so ist der Außenluft-Volumenstrom mit einer mechanischen Belüftungsanlage einzubringen.

3.6 SCHLEUSENBELÜFTUNG

Eine Schleusenbelüftung dient zur Rauchfreihaltung geschützter Bereiche, d.h. zur Rauchfreihaltung der Fluchtwege.

Bei einem Brand wird bei geschlossenen Türen ein Überdruck in der Schleuse aufgebaut und das Eindringen von Rauch verhindert. Bereits eingedrungener Rauch wird durch die hohe Luftwechselrate ausgespült. Die Schleuse sowie der angrenzende Fluchtweg können somit rauchfrei gehalten werden.

3.7 RAUCHABZUG IN STIEGENHÄUSERN TRVB 111 S

Rauchabzüge in Stiegenhäusern dienen im allgemeinen dazu, die im Brandfall eingedrungenen Rauchgase ins Freie abzuführen und sind bestimmungsgemäß nicht dazu vorgesehen das Stiegenhaus rauchfrei zu halten. Bei atriumähnlichen Stiegenhäusern müssen aufgrund des großen Raumvolumens zusätzliche Maßnahmen zur Rauchfreihaltung berücksichtigt werden.

ENTRAUCHUNGSANLAGEN

RAUCHFREIHALTUNG

RAUCHVERDRÄNGUNG DURCH DRUCKBELÜFTUNGSANLAGE (DBA) GEMÄSS TRVB 112 S

ERHALTUNG EINER RAUCHFREIEN SCHICHT DURCH RAUCH- UND WÄRMEABZUGSANLAGE (RWA) GEMÄSS TRVB 125 S

NATÜRLICHE RAUCHABFUHR DURCH AUFTRIEB BRANDRAUCHENTLÜFTUNG (BRE) GEMÄSS TRVB 125 S MECHANISCHE RAUCHAB-FUHR DURCH VENTILATOREN BRANDRAUCHABSAUGUNG (BRA) GEMÄSS TRVB 125 S

RAUCHVERDÜNNUNG

BRANDRAUCHVERDÜNNUNGSANLAGEN (BRV) GEMÄSS ÖNORM H 6029

> RAUCHABZUG IN STIEGENHÄUSERN GEMÄSS TRVB 111 S

RAUCHABLEITUNGSANLAGEN (RAA) GEMÄSS TRVB 125 S – ANHANG 7 SONSTIGE ANLAGEN, DIE KEINE RAUCHFREIHALTUNG BEWIRKEN (Z. B. NACH OIB-RICHTLINIE 2.2)

Quelle: TRVB 125 S

CO-WARNANLAGEN

100

Quelle: ÖNORM M 9419

4. Druckbelüftungsanlagen (DBA)

Ziel einer Druckbelüftungsanlage ist es, durch Ventilatoren Druckdifferenzen zwischen verschiedenen Räumen oder Raumgruppen künstlich zu erzeugen und damit die Bewegung des Brandrauches so zu beeinflussen, dass im Brandfall definierte räumlich geschlossene Bereiche innerhalb eines Gebäudes unter genau festgesetzten Bedingungen (Auslegungskonzept) rauchfrei erhalten werden.

Der zu schützende Bereich wird durch Belüftung unter Überdruck gegenüber dem nicht geschützten Bereich gesetzt.

Bei Druckbelüftungsanlagen handelt es sich somit um **Rauchkontrolleinrichtungen,** welche es ermöglichen, Rauchbewegungen zu beeinflussen.

4.1. SYSTEMKLASSEN GEMÄSS TRVB 112 S

Bestimmt durch die unterschiedlichen Anforderungen, wie etwa die Nutzung, die Gebäudehöhe oder die zu erwartende Personendichte im Gebäude, sind vier-Systemklassen (Auslegungskonzepte) definiert. In den einzelnen Konzepten sind die Anforderungen folgend festgesetzt.

DRUCKBELÜFTUNGSANLAGE DBA GESAMTÜBERSICHT **ANLAGENPLANUNG SYSTEMAUSWAHL** ANLAGENBESCHREIBUNG • PLÄNE • FESTLEGUNG DER SYSTEMKLASSE • SITUIERUNG DER DBA-• BRANDSCHUTZKONZEPT • FESTLEGUNG DER GESCHÜTZTEN-KOMPONENTEN • BAUBESCHEID • PRODUKTKONFIGURATION -**BEREICHE** • LEISTUNGSVERZEICHNIS • PLANUNG DER STRÖMUNGSWEGE DIMENSIONIERUNG UND AUSWAHL • SICHERSTELLUNG DER EINHALTUNG • TECHNISCHE BESCHREIBUNG BRANDFALL STEUFRUNG/ DER ERFORDERLICHEN DRUCK- UND SCHALTSCHRANKAUSLEGEN STRÖMUNGSKRITERIEN SOWIE DER • KABELLISTE TÜRÖFFNUNGSKRÄFTE ANLAGENSCHEMA

Aufenthaltskonzept TRVB 112 S 6.2.1	Räumungsalarmkonzept TRVB 112 S 6.2.2	Brandbekämpfungskonzept TRVB 112 S 6.3	Raumschutzkonzept TRVB 112 S 6.4
Druckkriterium Δp	Druckkriterium Δp	Druckkriterium Δp	Sonderfall
Strömungskriterium v	Strömungskriterium v	Strömungskriterium v	Rauchfreihaltung einzelner
Keine gesicherte Abströmung notwendig	Gesicherte Abströmung notwendig	Gesicherte Abströmung notwendig	Räume oder Raumgruppen, z. B. Zufluchtsräume durch
1 Ventilator Türöffnungskraft < 100 N	2 redundante Ventilatoren je 50% der erforderlichen Luftmenge	2 redundante Ventilatoren je 100% der erforderlichen Luftmenge	Überdruck im geschützten Raum gegen Raucheintritt
J	Beide Ventilatoren laufen	1 Ventilator im Stand-by	
	Türöffnungskraft < 100 N	Türöffnungskraft < 100 N	

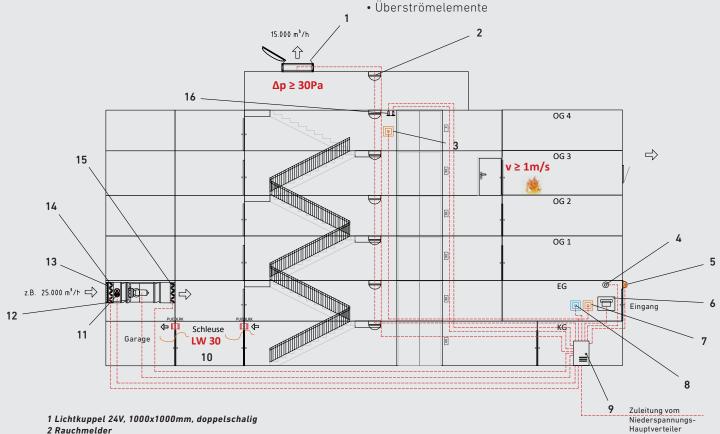
Systemklassen (Auslegungskonzepte) gemäß TRVB 112 S

4.2. AUFENTHALTSKONZEPT

Es wird davon ausgegangen, dass nur eine geringe Anzahl von Personen durch einen Brand unmittelbar gefährdet ist und weitere im Objekt befindliche Personen sich in sicheren Bereichen aufhalten können.

Demnach sind Türen zwischen dem geschützten Bereich und dem Brandbereich nur kurz, während der Fluchtphase, geöffnet.

Somit ist eine gesicherte Abströmung im Regelfall nicht erforderlich, das wesentliche Kriterium für die Rauchfreihaltung ist das Druckkriterium.


Druckbelüftungsanlage: Variante Lichtkuppel

Im Aufenthaltskonzept lt. TRVB 112 S, 2020 muss das Stiegenhaus mit einem Frischluftvolumenstrom von mindestens 15.000 m³/h von unten nach oben durchgespült werden, wobei ein Mindestdruck von 30 Pa gegenüber dem Freien erforderlich ist. Eine gesicherte Abströmung ist dabei nicht notwendig.

Grundkomponenten:

- Ventilator
- AUL-Klappe
- Druckregelklappe (Ventilator)
- Druckregeleinheit
- Drucksensoren
- Schaltschrank
- Rauchmelder

- 3 Druckknopfmelder orange
- 4 Signalhupe
- 5 Blitzlichtleuchte
- 6 FW-Bedientableau
- 7 Druckknopfmelder orange
- 8 Druckknopfmelder blau (Hausalarm)
- 9 DBA-Schaltschrank
- 10 Überströmelement; Schleuse
- 11 Kanalrauchmelder
- 12 Ventilator, z.B. Axialventilator AXC 630-9/22-2 (11 kW)
- 13 AUL-Wetterschutzgitter WSG 95
- 14 AUL-Jalousieklappe JK-A-03-L mit Federrücklaufantrieb NF24AS2
- 15 Druckregelklappe (Ventilator): Druckregel-Jalousieklappe JK-A-03-L mit Superschnellläufer stetig 0-10V NMQ24ASR
- 16 Drucksensoren Stiegenhaus redundante Ausführung

4.3. FUNKTIONSWEISE

Das Grundprinzip einer Druckbelüftungsanlage (DBA) ist die so genannte Rauchverdrängung, bei welcher eine Gas-Druckdifferenz erzeugt wird. Dabei wird durch Überdruck und eine künstlich erzeugte Luftströmung der bei einem Brand entstehende Rauch abgedrängt,

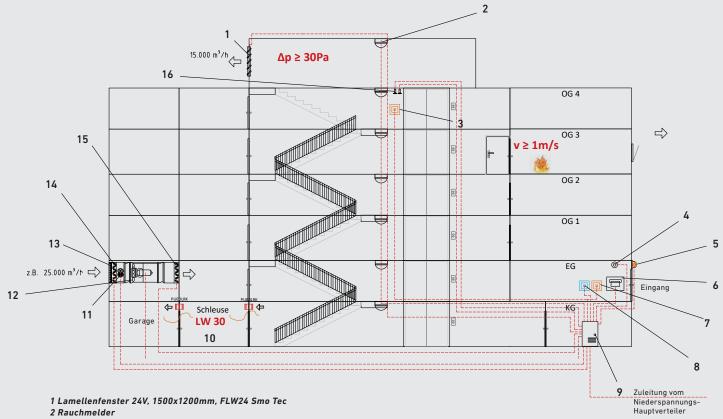
dieser kann so nicht in den geschützten Bereich bzw. das Stiegenhaus gelangen. Es ist dabei klar, dass im zu schützenden Bereich keine Brandlast vorhanden sein darf! Denn würde dieses Material brennen, käme es trotz vorhandener DBA zu einer Verrauchung des Stiegenhauses.

Druckbelüftungsanlage: Variante Lamellenfenster

Im Aufenthaltskonzept lt. TRVB 112 S, 2020 muss das Stiegenhaus mit einem Frischluftvolumenstrom von mindestens 15.000 m³/h von unten nach oben durchgespült werden, wobei ein Mindestdruck von 30 Pa gegenüber dem Freien erforderlich ist. Eine gesicherte Abströmung ist dabei nicht notwendig.

Grundkomponenten:

- Ventilator
- AUL-Klappe
- Druckregelklappe (Ventilator)
- Druckregeleinheit
- Drucksensoren
- Schaltschrank
- Rauchmelder
- Überströmelemente


Aufenthaltskonzept TRVB 112 S 6.2.1

Druckkriterium Δp Strömungskriterium v

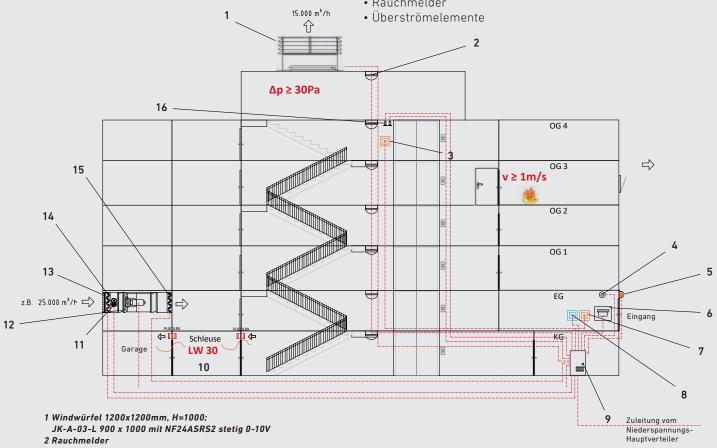
Keine gesicherte Abströmung notwendig

1 Ventilator

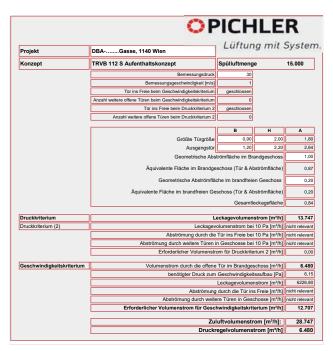
Türöffnungskraft < 100 N

- 3 Druckknopfmelder orange
- 4 Signalhupe
- 5 Blitzlichtleuchte
- 6 FW-Bedientableau
- 7 Druckknopfmelder orange
- 8 Druckknopfmelder blau (Hausalarm)
- 9 DBA-Schaltschrank
- 10 Überströmelement; Schleuse
- 11 Kanalrauchmelder
- 12 Ventilator, z.B. Axialventilator AXC 630-9/22-2 (11 kW)
- 13 AUL-Wetterschutzgitter WSG 95
- 14 AUL-Jalousieklappe JK-A-03-L mit Federrücklaufantrieb NF24AS2
- 15 Druckregelklappe (Ventilator): Druckregel-Jalousieklappe JK-A-03-L mit Superschnellläufer stetig 0-10V NMQ24ASR
- 16 Drucksensoren Stiegenhaus redundante Ausführung

4.4. SCHUTZZIEL


Der zu schützende Bereich (in der Regel ein Stiegenhaus) wird also durch Belüftung unter Überdruck gegenüber dem nicht geschützten Bereich gesetzt. Druckbelüftungsanlagen (DBA) verfolgen daher im Brandfall das Schutzziel der Rauchfreihaltung von Fluchtwegen. (Aufenthaltskonzept TRVB 112 S)

Druckbelüftungsanlage: Variante Windwürfel


Im Aufenthaltskonzept lt. TRVB 112 S, 2020 muss das Stiegenhaus mit einem Frischluftvolumenstrom von mindestens 15.000 m³/h von unten nach oben durchgespült werden, wobei ein Mindestdruck von 30 Pa gegenüber dem Freien erforderlich ist. Eine gesicherte Abströmung ist dabei nicht notwendig.

Grundkomponenten:

- Ventilator
- AUL-Klappe
- Druckregelklappe (Ventilator)
- Druckregeleinheit
- Drucksensoren
- Schaltschrank
- Rauchmelder
- Aufenthaltskonzept TRVB 112 S 6.2.1 Druckkriterium Δp Strömungskriterium v Keine gesicherte Abströmung notwendig 1 Ventilator Türöffnungskraft < 100 N

- 3 Druckknopfmelder orange
- 4 Signalhupe
- 5 Blitzlichtleuchte
- 6 FW-Bedientableau
- 7 Druckknopfmelder orange
- 8 Druckknopfmelder blau (Hausalarm)
- 9 DBA-Schaltschrank
- 10 Überströmelement; Schleuse
- 11 Kanalrauchmelder
- 12 Ventilator, z.B. Axialventilator AXC 630-9/22-2 (11 kW)
- 13 AUL-Wetterschutzgitter WSG 95
- 14 AUL-Jalousieklappe JK-A-03-L mit Federrücklaufantrieb NF24AS2
- 15 Druckregelklappe (Ventilator): Druckregel-Jalousieklappe JK-A-03-L mit Superschnellläufer stetig 0-10V NMQ24ASR
- 16 Drucksensoren Stiegenhaus redundante Ausführung

Ausschnitte Berechnungsblatt

4.5. PLANUNG DER ZULUFT-EINBRINGUNG **UND DER ABSTRÖMWEGE**

Durch eine ausreichende Anzahl und geeignete Anordnung von Belüftungs-, Druckentlastungs- und Abströmöffnungen, sowie gegebenenfalls Überströmöffnungen muss eine homogene Druckverteilung erreicht werden. Im Brandfall muss ein freier Strömungsweg vom Lufteintritt in die Druckbereiche bis zu den Abströmanlagen gewährleistet sein.

4.6. EINHALTUNG DER ERFORDERLICHEN DRUCK- UND STRÖMUNGSKRITERIEN SOWIE DER TÜRÖFFNUNGSKRÄFTE

4.6.1. STRÖMUNGSKRITERIUM (SK)

Durch das Strömungskriterium wird die mindestens erforderliche mittlere Strömungsgeschwindigkeit durch • Leckagevolumenstrom: bei Überdruck Türöffnungen (oder sonstige Öffnungen) vom geschützten in den ungeschützten Bereich festgelegt. In Abhängigkeit vom Schutzziel und der Konfiguration des Schutzbereiches wird durch das Strömungskriterium definiert, welche und wie viele Öffnungen des Überdruckbereiches und des Unterdruckbereiches (z. B. Abströmöffnungen, Aufzugstüren) als gleichzeitig offen angenommen werden müssen.

4.6.2. DRUCKKRITERIUM (DK)

Durch das Druckkriterium wird die mindestens erforderliche Druckdifferenz beidseits einer geschlossenen Türe (oder sonstigen Öffnung) zwischen geschütztem und nicht geschütztem Bereich in Abhängigkeit vom Schutzziel und der Konfiguration des Schutzbereiches festgelegt.

Die geforderte Druckdifferenz enthält bereits gewisse Sicherheitsreserven für nicht vom Brand hervorgerufene Einflüsse.

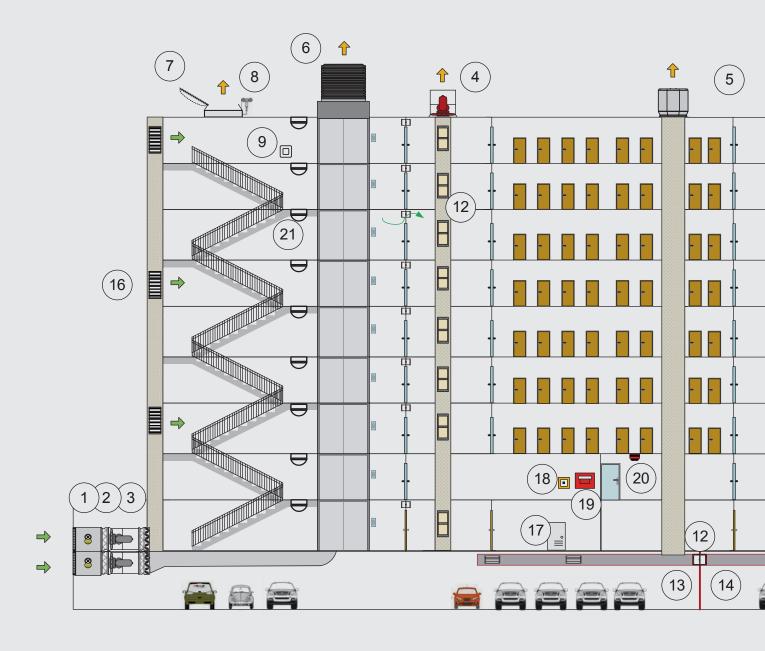
Wird der geschützte Bereich aus mehreren aneinander grenzenden Räumen gebildet, muss folgendes Druckgefälle erfüllt sein:

Druck im Aufzugsschacht > Stiegenhaus ≥ Druck in der Schleuse > Druck im Brandbereich > Umgebungsdruck.

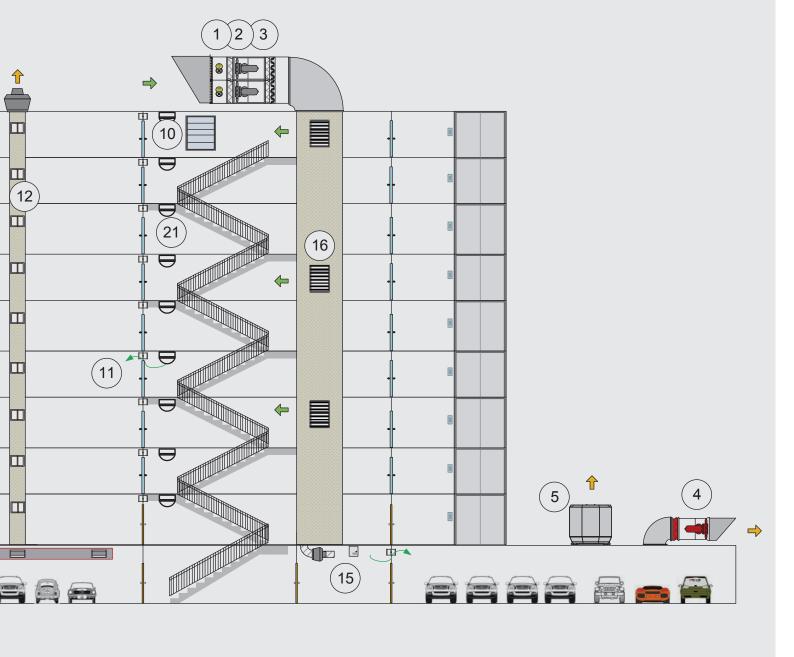
4.6.3. TÜRÖFFNUNGSKRAFT

Die Türbetätigungskraft ist neben der Druckdifferenz abhängig von der Türgeometrie und dem eingesetzten Türschließer. Durch die von einer DBA und einer allen falls vorhandenen Abströmanlage bewirkten Druckdifferenzen darf weder die Öffenbarkeit von Türen noch das zuverlässige Schließen durch Türschließer unzulässig beeinträchtigt werden. Es müssen deshalb geeignete Vorkehrungen getroffen werden, dass die am Türgriff anzuwendende Kraft 100 N nicht überschreitet bzw. die Schließkraft von Türschließern durch die überdruckbedingten Kräfte beim Schließvorgang nicht überschritten wird.

4.6.4. ERMITTLUNG DER ERFORDERLICHEN LUFTMENGEN FÜR DAS DRUCK- UND **STRÖMUNGSKRITERIUM**


Die Zuluftmenge ergibt sich aus der Berechnung folgender Volumenströme:

- Ermittlung der Leckageflächen: Leckagen ergeben sich aufgrund von Türen und Fenstern, Ab-, und Überströmöffnungen, sowie Undichtheiten von Schächten, Wänden und Decken im Druckbereich.
- Regelvolumenstrom: Volumenstrom durch die offene Tür im Brandgeschoß sowie weiterer Abströmungen, wenn diese erforderlich sind.
- Erforderlicher Volumenstrom für Geschwindigkeitskriterium


5. Übersichtsschema – Komponenten

Dieses Übersichtsschema zeigt exemplarisch das Lieferprogramm der Pichler Entrauchungssysteme.

- 1 Kanalrauchmelder
- 2 Axialventilator
- 3 Frischluftklappe 4 Brandgas-Axialventilator 5 Brandgas-Dachventilator

- 6 Windwürfel 7 Lichtkuppel 8 Wind-Regensensor
- 9 Lüftungstaster
- 10 Glaslamellenfenster
- 11 Überströmelement
- 12 Brandrauchsteuerklappe/Abströmklappe
- 13 Entrauchungskanal 14 CO-Anlage
- 15 Schleusenanlage
- 16 Zuluftgitter
- 17 MSR-Schaltschrank DBA / BRV / CO
- 18 Druckknopfmelder
- 19 Feuerwehrbedientableau
- 20 Sirene/Blitzlicht
- 21 Rauchmelder

Mitteldruck-Axialventilator

Brandgas-Dachventilator

5.1. VENTILATOREN

5.1.1. AXIALVENTILATOREN

Die Ventilatoren sind mit einem Laufrad aus durch Glasfaser verstärktem Polyamid (PAG) und einer Nabe aus einer Aluminium-Druckguss ausgestattet. Dieses wurde speziell für Applikationen entwickelt, bei denen je nach Durchmesser ein Gesamtdruck von bis zu 1000 Pa auftritt. Je nach Druckabfall Ihrer Installation. Durchmesser und Geschwindigkeit des gewählten Laufrads kann die verfügbare Luftleistung bis zu 130.000 m³/h erreichen. Die Produktreihe besteht aus 13 Durchmessern: 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1250, 1400 mm. Die Ventilatoren sind mit genormten asynchronen Innenläufermotoren (IEC) ausgestattet. Es handelt sich um B3 Fußmotoren, IP55, Klasse 5, die bis zu 2,2 kW dreiphasig mit 230/400 V 50 Hz und darüber mit 400/690 V 50 Hz mit PTC Thermistoren (Kaltleiter) verfügbar sind. Je nach Drehzahl und Durchmesser sind die Motoren 2-, 4-, 6- oder 8-polig erhältlich. Für jeden Durchmesser und jede verfügbare Drehzahl umfasst die Produktreihe 5 Anstellwinkel, insgesamt also an die 175 mögliche Kombinatio-

Einbaulage: Für horizontalen und vertikalen Einbau oder Wandmontage geeignet.

nen, um auf jeden Bedarf eingehen zu können.

Zubehör: Großes Zubehör-Programm mit besonderen Schutzmaßnahmen, Diffusoren, Montagefüßen, Schallund Wärmedämmung. Wahlweise mit stufenlos regulierbarem oder 2-stufigem Motor. Alle Ausführungen können sowohl mit Frequenzumformer betrieben als auch auf einen konstanten Druck geregelt werden.

Entrauchungsbetrieb: Die Axialventilatoren sind nach DIN EN 12101 Teil 3 für den Betrieb bis 300°C/60min (F300), 300°C/120 min, als auch bei 400°C/120min (F400) geprüft.

5.1.2. BRANDGAS-DACHVENTILATOREN

Alle Brandgasventilatoren sind nach EN 12101-3 zugelassen. Rauchgas-Dachventilator bis zu 400.000 m³/h und Druckerhöhung bis 1.900 Pa. Erhältlich für 400 °C/120 min oder 600 °C/120 min (F400 und F600). Rauchgas-Radialventilator 400 bis 400.000 m³/h und Drücke bis 3.000 Pa. Erhältlich für 200, 300, 400 oder 600 °C/120 min (F200, F300, F400, F600). Die Dachventilatoren eignen sich zum Aufbau auf Flach-, Pult-, Sattel-, Bogen- und Shed-Dächern.

Gehäuse: Die Seitenbleche und die Motorabdeckung werden aus seewasserbeständigem Aluminium gefertigt. Die Grundplatte mit integrierter Einströmdüse wird aus verzinktem Stahlblech hergestellt.

Laufrad: Die rückwärtsgekrümmten Laufräder aus Aluminiumblech werden zusammen mit der Laufradnabe entsprechend der Gütestufe G 6,3 nach DIN ISO 1940 statisch und dynamisch gewuchtet.

Motor: IEC-Drehstrom-Normmotoren in Bauform IMB5, Schutzart IP55, 1~230 V/50 Hz bzw. 3~400 V/50 Hz, Wärmeklasse F. Die Motoren der Standardventilatoren bis Baugröße 500 sind spannungssteuerbar.

Aluminiumgitter mit quadratischen Jalousieklappe Öffnungen

5.2. ZULUFTANLAGEN

Die Außenluftansaugung muss immer so angeordnet sein, dass unter keinen Umständen Rauch infolge des betrachteten Brandereignisses angesaugt werden kann. Erfolgt die Ansaugung am Dach, so muss diese über zwei Ansaugstellen an unterschiedlichen Gebäudeseiten erfolgen.

Einbauvarianten

- Horizontaler oder vertikaler Einbau sowie Anschluss an Außenwand möglich.
- Frei ansaugend/frei ausblasend
- Frei ansaugend/druckseitig Rohrleitung
- Saugseitig Rohrleitung/frei ausblasend
- Saugseitig Rohrleitung/druckseitig Rohrleitung

In jeder Außenluftansaugung befindet sich ein Kanalrauchmelder. Bei Rauchdetektion wird die verrauchte Ansaugung verschlossen. Gibt es nur eine Ansaugstelle, so wird der Ventilator abgeschaltet. Die Anlage verweilt in der Betriebsstellung Rauchabzug. Das System muss nach Ablauf von 120 Sekunden selbsttätig prüfen, ob der Ventilator wieder in Betrieb gesetzt werden kann. Durch die Feuerwehr Vorrangschaltung am Feuerwehrbedientableu ist es der Feuerwehr stets möglich, den Ventilator durch den Schlüsselschalter zu reaktivieren.

5.2.1. FRISCHLUFTKLAPPE TYPE JKA-03-L, JKA-07-G, JKA-07-LK

Regel-Drossel-Absperrklappe zur Druck- und Volumenstromänderung von Luftströmen. Der Rahmen besteht aus profiliertem Stahlblech mit beidseitigen Flanschen (30 mm), die Hohlkörperlamellen sind gegenläufig gekuppelt. Verschiedene Typen auf Anfrage im Pichler-Produkt-Programm.

5.2.2. LÜFTUNGSGITTER

Als Wand-, Decken-, oder Fassadenabschluss steht Ihnen außerdem eine Reihe von Lüftungsgittern zur Auswahl.

Eine große Auswahl an Lüftungsgittern finden Sie im technischen Datenblatt "Luftauslässe", fragen Sie nach unseren Maschendrahtgittern oder wenden Sie sich an Ihren zuständigen Betreuer.

Ansicht Lichtkuppel

5.3. ABSTRÖMANLAGEN

Als Abströmanlagen werden definierte Fenster, Türen, Schächte mit Brandrauchsteuerklappen und Druckregeleinheiten eingesetzt. Die Abströmung kann dabei natürlich oder maschinell erfolgen, sowie mit und ohne Druckregeleinheit kombiniert verwendet werden. Überströmelemente sind als unterstützende Komponente einer Abströmanlage zu betrachten.

Die Größen der Abströmflächen sowie die Wahl der Abströmeinheiten (Wand-, Deckeneinheit) richtet sich nach der Stiegenhausgeometrie und der Konzeption (Aufenthalts-, Räumungsalarm-, Brandbekämpfungskonzept).

5.3.1. NATÜRLICHE ABSTRÖMANLAGEN

Natürliche Abströmanlagen, mit brandschutztechnischen Anforderungen, sind grundsätzlich alle als Rauch- und Wärmeabzug (RWA) zugelassenen Abzugseinheiten, Türen und Tore der Klassifikation El 230, sowie Brandrauchsteuerklappen der Klassifikation El 90.

Dacheinheiten

- Lichtkuppel
- Windwürfel

Wandeinheiten

- Glaslamellenfenster
- Aluminiumlamellenfenster (Jalousieklappe)

5.3.2. MASCHINELLE ABSTRÖMANLAGEN

Hierbei handelt es sich entweder um:

- Abströmschächte in Schleusen oder Vorräumen, die in eine DBA eingebunden werden müssen oder
- Schleusenentlüftungen die keine direkte Anbindung an die Druckbelüftung haben, jedoch im Brandfall zu spülen sind.

Für maschinelle Abströmanlagen sind Brandgasventilatoren zu verwenden.

5.3.3. LICHTKUPPEL

Die Standard-Lichtkuppel ist zweischalig und besteht aus Acrylglas opal. Durchsturzsicherung gemäß ÖNORM B 3417. Je nach gefordertem U-Wert ist die Kuppel ein- bis vierschalig erhältlich. Lichtkuppeln werden betriebsfertig auf dem Dachsockel montiert geliefert. Je nach Konzeption der Anlage stehen unterschiedliche Antriebsvarianten, elektrisch 24 V und Öffnungswinkel von 90° bis 165° zur Verfügung, inkl. Endschalter/Seilzuggeber.

ACHTUNG: Bei Störung des Schaltschrankes und/oder der Regelkomponenten muss die Lichtkuppel in die sichere Lage übergehen (maximale Offenstellung durch USV -> Schaltschrank!).

A [mm]	B [mm]	Höhe [mm] Aufsatzkranz
900	900	500
1000	1000	500
1100	1100	500
1200	1200	500
1300	1300	500
1400	1400	500
1500	1500	500
1600	1600	500
1700	1700	500
1800	1800	500
1900	1900	500

Standardgrößen

Windwürfel

5.3.4. WINDWÜRFEL

Lamellen-Dachhaube aus verzinktem Stahlblech mit allseitiger Abströmmöglichkeit aus Eigenproduktion. Die Dachhaube ist zur thermischen Trennung auf einem isolierten Sockel montiert. Innenseitig angebrachtes Vogelschutzgitter. Erreichen der sicheren Stellung (durch Federrücklaufantrieb).

ACHTUNG: Bei Störung des Schaltschrankes und/oder der Regelkomponenten muss die Regelklappe vom Windwürfel in die sichere Lage übergehen (maximale Offenstellung).

A [mm]	B [mm]	H [mm]
900	900	700
1100	1100	800
1200	1200	900
1300	1300	900
1400	1400	900
1500	1500	900
1600	1600	1000
1700	1700	1100
1800	1800	1100
1900	1900	1200
2000	2000	1200

Standardgrößen

Lamellenfenster FLW 24

Lamellenfenster FLW 24

5.3.5. GLASLAMELLENFENSTER

Lamellen außen bündig mit Fensterrahmen abschließend. Elementrahmen aus Aluminium, thermisch getrennt. Elementbreite bis 2500 mm, Elementhöhe bis 2800 mm, Rahmentiefe 65 mm. Öffnungswinkel 85°. Unterschiedliche Antriebsvarianten, elektrisch 24 V oder 230 V. Oberfläche Eloxal oder Pulverbeschichtung RAL/DB. Mit Antrieb 24V inklusive Zumeldung mit potentialfreiem Anschluss.

Luftdurchlässigkeit nach EN 12207, Schlagregendichtheit nach EN 12208. In der Ausführung als RWA-Einheit CE-Zertifiziert nach EN 12101-2.

ACHTUNG: Bei Störung des Schaltschrankes und/oder der Regelkomponenten muss das Lamellenfenster in die sichere Lage übergehen (maximale Offenstellung durch USV -> Schaltschrank!).

Jalousieklappe / Druckregelklappe

5.3.6. MOTORISCHE JALOUSIEKLAPPE

Regel-Drossel-Absperrklappe zur Druck- und Volumenstromänderung von Luftströmen in lüftungstechnischen Anlagen.

Der Rahmen besteht aus profiliertem Stahlblech (Bautiefe 120 mm Type JK-A-03-L / Bautiefe 180 mm Typen JK-A-07-G & JK-A-07-LK) mit beidseitigen Flanschen (30 mm).

Die Hohlkörperlamellen sind gegenläufig gekuppelt und aus Aluminiumprofilen (Type JK-A-03-L) oder aus verzinktem Stahl (Typen JK-A-07-G & JK-A-07-LK) mit Gummilippendichtung.

Die Zahnräder sind beidseitig außen angeordnet und bestehen aus Spezialkunststoff.

Achse: Vierkant 10x10 mm Type JK-A-03-L / Vierkant 15x15 mm Typen JK-A-07-G & JK-A-07-LK (mit 90 mm Überstand) mittig angeordnet

Seitenabdichtung:

- JK-A-03-L: Die Seitenabdichtung zwischen Lamellen und Rahmen besteht aus Gleitfolie und Spezialschaum.
- JK-A-07 LK: Die Seitenabdichtung zwischen Lamellen und Rahmen besteht aus Teflonpolstern.

Luftdichtheit:

- JK-A-07-G: Luftdichtheit: Klasse 2 nach EN 1751
- JK-A-03-L: Luftdicht nach DIN 1946 T4 (Klasse 4 nach EN 1751)
- JK-A-07 LK:; Luftdicht nach DIN 1946 T4 (Klasse 4 nach EN 1751)

Besonderheiten:

- Type JK-A-03-L: Fertigungshöhen nur in 100er Schritte möglich!
- Jalousieklappen JK-A-07 LK: auch in ALU lieferbar!

JKA-03-L: (H x B) 200 x 300 mm bis 1400 x 1500 mm **JKA-07-G:** (H x B) 180 x 300 mm bis 2490 x 2000 mm **JKA-07-LK:** (H x B) 180 x 300 mm bis 2490 x 2000 mm

5.3.7 MOTORISCH GESTEUERTE DRUCKREGELKLAPPE

Die Ausregelung des vorbestimmten Überdrucks im geschützten Bereich wird motorisch geregelt. Ausschlaggebend für die Wahl der Druckregeleinheit sind die Gebäudegeometrien, physikalischen Gegebenheiten sowie architektonische Voraussetzungen.

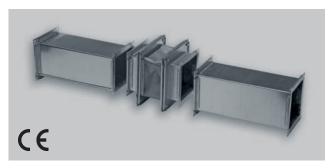
Durch ein neues (internes) Regelkonzept (kein FU) wird eine Standard-Jalousieklappe mit stetig regelbarem Superschnellläufer eingesetzt, z. B. mit einem NMQ24ASR.

ACHTUNG: Bei Störung des Schaltschrankes und/oder der Regelkomponenten muss die Druckregelklappe in die sichere Lage übergehen (maximale Offenstellung durch USV -> Schaltschrank!).

motorisch gesteuerte Druckregelklappe

Das Schließmoment wird über Druckfühler ermittelt und motorisch erzeugt. Volumenstromabhängige Ausregelung des Überdrucks.

- Kürzere Inbetriebnahmedauer
- Schrägeinbau möglich
- Fernjustierung möglich


Das Schließmoment wird durch Druckfühler ermittelt und motorisch über einen Schnelllaufantrieb an einer luftdichten Jalousieklappe erzeugt. Es erfolgt eine volumenstromabhängige Regelung des Überdrucks.

Gegenläufig gekuppelte Hohlkörperlamellen aus Aluminiumprofilen mit Gummilippendichtung, Lamellenabstand 100 mm. Beidseitig außen angeordnete Zahnräder aus Spezialkunststoff. Rahmen aus profiliertem Stahlblech verzinkt 1,25 mm, Bautiefe 120 mm, Flansch 30 mm C-Profil mit Eckloch. Abdichtung zwischen Lamellen und Rahmen aus Teflon, Luftdichtigkeit: Klasse 3 nach EN 1751; luftdicht nach DIN 1946 T4.

Die Druckentlastungsklappen sind für den Wand- oder Deckeneinbau einsetzbar und werden mit fertig montiertem Zubehör wie Schiebestutzen, Wetterschutz, Greifschutz geliefert.

Größen: (H x B) 100 mm x 200 mm bis 2000 mm x 2000 mm.

Entrauchungs-Leitungssystem Type ERL und Dehnungskompensator

5.4. ENTRAUCHUNGS-LEITUNGSSYSTEM TYPE ERL MIT RECHTECKIGEM QUERSCHNITT FÜR EINZELABSCHNITTE UND FÜR HORIZONTALE LUFTLEITUNGSFÜHRUNG

Systemgeprüfte, klassifizierte und CE-gekennzeichnete Lüftungsleitungen mit rechteckigem Querschnitt für den Einsatz und Anwendung in Rauch- und Wärmeabzugsanlagen, z.B. TRVB 125 S:2015, allgemein als Entrauchungsleitungen bezeichnet. Entrauchungsleitung für Einzelabschnitte (single) und für horizontale Luftleitungsführung aus verzinktem Stahlblech, gemäß den Anforderungen der europäisch harmonisierten Produktnorm EN 12101-7:2011, den Prüfanforderungen gemäß der EN 1366-9:2008 und Klassifizierung gemäß der EN 13501-4:2011.

Im Rahmen der Bauteilprüfung durch die akkreditierte Prüf- und Überwachungsstelle MPA NRW und IBS/ISC Linz wurden die Anforderungen hinsichtlich des Raumabschlusses, der Rauchdichtheit, der mechanischen Formstabilität, der Aufrechterhaltung des Querschnittes und der geeigneten Befestigung nachgewiesen. Die Ergebnisse der Untersuchungen sind im Prüfbericht Nr. 210007041 von MPA NRW, im Klassifizierungsbericht und Ausführungskatalog Nr. 316052403-A und im Zertifikat der Leistungsbeständigkeit Nr. 1322-CPR-37184/03 von IBS – Institut für Brandschutztechnik und Sicherheitsforschung GmbH zusammengefasst.

Produktprogramm Entrauchungs-Leitungssystem Type ERL

Entrauchungsleitungen werden ausschließlich als komplette Systemlösung geliefert, inkl. der gegebenenfalls erforderlichen temperaturbeständigen Kompensatoren (elastischen Stutzen), der Befestigungsteile und temperaturbeständigen Dichtbänder. Für den Längenausgleich bei der thermischen Ausdehnung unter Brandeinwirkung müssen in Entrauchungsleitungs-Systemen im Abstand von max. 10 m Leitungslänge geprüfte und temperaturbeständige Kompensatoren eingebaut werden.

Technische Spezifikation:

Abmessungen: max. 1250 mm x 1000 mm Material Leitung: Stahlblech verzinkt, WS 1,1 mm

mit Profilflansch 30 mm

Elastischer Stutzen: hochtemperaturbeständiger

Gewebebalg mit Anschlussflanschen

Luftdichtheit: Kaltleckage Klasse B gem. EN 1507:2006 Nachweis für < 5 m³/h je m² unter Temperatur bei 600 °C **Druckstufe:** höchste Klasse 3; Unterdruck -1500 Pa /

Überdruck +500 Pa

Temperaturbeständigkeit: geprüft bei 600 °C über

eine Zeitdauer größer als 120 min

Anwendung: für horizontale Luftleitungsführung

im Einzelabschnitt (Single)

Klassifizierung gemäß EN13501-4: $\rm E_{600}$ 120 ($\rm h_{\odot}$) S 1500 sin Ne

sıngle

Zertifikat der Leistungsbeständigkeit / Leistungserklärung – DoP: 1322-CPR-37184/03 /

DoP_JP_ERL1_DE A-06/2016

Bauteil / Beschreibung	Abmessung
Eckiger ERL-Kanal & ERL- Formstück	max. 1250 x 1000 mm
Elastischer Stutzen temperaturbeständig bis 600 °C	max. 1250 x 1000 mm
Montageschienen Abhänge-System HILTI MQ, Länge 3m/6m	MQ-21/MQ-41
Montagewinkel für deckenbündige Montage	HILTI Winkel W1
Montagedübel, Lastanker HILTI	HST M10x90
Temperaturbeständiges Kanal- dichtband, Gewindestangen, Sechskantschrauben, Scheiben	M10

Entrauchungsklappe Kamouflage MP für den Einsatz in Druckbelüftungsanlagen (Rauchschutz-Druck-Anlagen)

5.5. ENTRAUCHUNGSKLAPPEN KAMOUFLAGE MP FÜR DRUCKBELÜFTUNGSANLAGEN

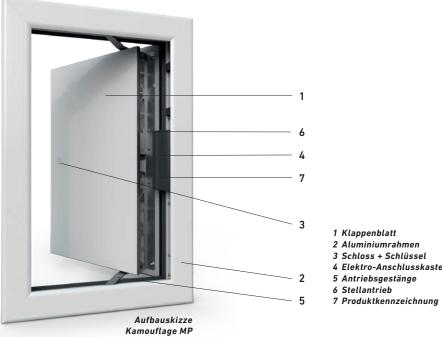
Im Brandfall stellen Druckbelüftungssysteme eine optimale Technik für möglichst rauchfreie Rettungswege für Bewohner und Rettungskräfte dar. Die Entrauchungsklappen eignen sich in Verbindung mit Druckbelüftungsanlagen nach EN 12101 und TRVB 112 S, und werden in innenliegenden angrenzenden Fluchtbereichen eingesetzt. Im Normalbetrieb sind die Klappen nahezu flächenbündig geschlossen und gewährleisten dichten Raumabschluss. Bei einem Brandereignis öffnet sich in der Brandetage die Entrauchungsklappe für den Abzug der gefährlichen Rauchgase.

Die Ansteuerung erfolgt durch die Druckbelüftung oder Brandmeldeanlage. Damit wird eine Verrauchung in den Brandabschnitten und den Brandetagen minimiert. Das steigert im Wesentlichen die Sicherheit im Gebäude. Entrauchungsklappen für die Druckbelüftung können vorzugsweise im Sammelschacht im Inneren von Gebäuden im Bereich des Stiegenhauses angeordnet werden. Die Entrauchungsklappe Kamouflage MP ist ein Klappensystem mit doppelwirkendem Stellantrieb, der das Öffnen und Schließen des einflügeligen Klappenblattes per Fernzugriff ermöglicht.

Entrauchungsklappen der Type Kamouflage MP sind gemäß Produktnorm EN 12101-8 CE-gekennzeichnet und für den vertikalen Einbau in Öffnungen von Abzugsschächten in Verbindung mit der Gebäudestruktur vorgesehen.

Sie erfüllen die Kriterien für eine Feuerwiderstandsdauer von mehr als 90 Minuten (siehe Klassifikationsübersicht) und gewährleisten minimalen Druckverlust. Beim Einsatz der Klappen in Verbindung mit mechanischen Abströmanlagen dürfen gemäß TRVB 125 S Pkt. 11.1.4 Ventilatoren erst nach dem Erreichen der Sicherheitsstellung hochgefahren werden.

11.1.4 Bei mechanischen RWA (BRA) muss nach Auslösung der Anlage die für den Brandfall bestimmungsgemäße Drehzahl des jeweiligen Brandgasventilators innerhalb von 90 Sekunden erreicht werden. Bei Aktivierung über rauchempfindliche Elemente gemäß ÖNORM EN 54-7 darf diese Zeitspanne 120 Sekunden betragen. Innerhalb dieser Zeitspanne müssen die notwendigen Steuer- und Regelabläufe abgeschlossen sein. Befinden sich im System Rauchsteuerklappen oder andere Abschlüsse, so sind diese mit Endschaltern auszustatten. Wird über diesen Schalter das Erreichen der Sicherheitsstellung der Abschlüsse signalisiert, darf der Ventilator hochgefahren werden. Unabhängig davon ist der Ventilator jedenfalls zeitgesteuert spätestens 60 Sekunden nach Aktivierung der Anlage hochzufahren.


Einsatzbereich

Der Einbau der Entrauchungsklappen kann in baulich massive Betonschächte in Verbindung mit einseitiger Schachtbeplankung erfolgen (siehe Detail Einbau). Verschiedene RAL-Farben (mit Aufpreis) auf Anfrage.

Vorteile der Entrauchungsklappe KAMOUFLAGE MP:

- Feuerwiderstand bis EI 90/120 (v_{ed} i<->o) S1500 C10000 AA multi
- Konformität mit der harmonisierten Produktnorm EN 12101-8
- Entrauchungsklappe geprüft gemäß EN 1366-10
- geeignet für die Installation in Schächten aus Kalziumsilikat (z.B. Promatect L500,...)
- und/oder in Verbindung mit massiven Betonschächten
- wartungsfreie Ausführung, Kontrollprüfung gemäß Anforderung
- aus nichtbrennbarem Verbundbaustoff
- freie Abströmfläche bis 0,69 m² (max. B x H: 700 x 1075 mm)
- Zyklusprüfung: 10.000 Zyklen (ohne Belastung) durchgeführt
- nahezu flächenbündiger Schachteinbau mit geringer Einbautiefe
- rauchdichter Raumabschluss
- ansprechende Optik
- zur Anwendung in Verbindung mit Druckbelüftungsanlagen. Einbauart: Schachtmontage 0/180°, Mindest-Zwischenabstände zugelassen (TRVB 112 S)

- 1 Klappenblatt
- 2 Aluminiumrahmen 3 Schloss + Schlüssel
- 4 Elektro-Anschlusskasten

Klassifizierung gemäß Produktnorm EN 12101-8 und EN 13501-4

Einbausituation	Klassifizierung	Abmessung [B x H]
Für Schachteinbau und in Verbindung mit massiver Schachtkonstruktion /-wand, vertikale feuerwiderstandsfähige Entrauchungsleitungen.	EI 90/120 (v _{ed} i⇔o) S 1500 C10000 AA multi	min. 350 x 385 mm max. 700 x 1075 mm

Technische Daten

Ausführung	Entrauchungsklappe einflügelig, Type Kamouflage MP					
Beschreibung	Entrauchungsklappe mit Auf-Zu-Stellantrieb in geschlossener Wirkstellung, zur Verwendung in Verbindung mit Anlagen zur Ableitung von Wärme und Rauch bei Differenzdrucksystemen					
Abmessungen	min. 350 x 385 mm bis max. 700 x 1075 mm					
CE-Kennzeichnung	lt. europäischer harmonisierter Produktnorm EN 12101-8, IBS Institut für Brandschutztechnik und Sicherheitsforschung GmbH mit Identifikation Nr. 1322-CPR-37184/08 und 09					
Prüfbericht-Zusammenfassung und Klassifizierungsbericht	Nr. 317041801-B, Rev 1 vom September 2020 / IBS – Institut für Brandschutztechnik und Sicherheitsforschung GmbH, Petzoldstrasse 45, A-4017 Linz					
Klassifizierung	El 90/120 (v _{ed} i⇔o) S 1500 C10000 AA multi					
Sicherheitsposition	offen / geschlossen Stellung					
Auslösung	elektrische Fernauslösung					
Installation	für Schachteinbau und in Verbindung mit massiver Schachtkonstruktion /-wand in Verbindung mit einseitiger Schachtbeplankung (z.B. PROMATECT L500 u. a.)					
Einbaulage	Klappenblatt mit vertikaler Achsenlage; Einbauart: Schachtmontage 0/180°, mindest Zwischenabstände zugelassen					
Arbeitstemperatur / Umgebungsbedingungen	-20 °C bis +50 °C, 1 Stunde 70 °C, für Anwendung in Innenräumen					
Nennspannung / Nennleistung	24-48VDC -10%/+15% im Betrieb 4W					
Stellantrieb	VA KAM MP MEC					
Laufzeit	<60 sek.					
Stellungsanzeige / Endschalter	im Stellantrieb integriert, Schaltleistung: 1A (max. 60V)					
Zyklus- / Dauertest	10.000 Zyklen ohne Belastung (für geschlossene Wirkstellung)					
Wartung / periodische Kontrollprüfung	wartungsfreie Arbeitsweise / halbjährliches Überprüfungsintervall empfohlen, jedoch mind. 1 x jährlich durchzuführen					
Zubehör	Einbaurahmen EASY-KAP, Einbaurahmen mit Absturzsicherung EASY-KGC					

Entrauchungsklappe ERLK(ER)-multi

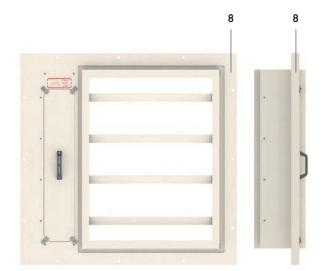
5.6. ENTRAUCHUNGSKLAPPE ERLK(ER)-MULTI

Die eckige Entrauchungsklappe ERLK-multi ist in Lamellenbauweise gefertigt. Anstatt eines einzelnen Klappenblattes sind, abhängig von der Bauhöhe, 1 bis 12 Einzellamellen verbaut, wodurch eine sehr geringe Bautiefe von 250 mm erreicht wird. Es steht eine Vielzahl an möglichen Abmessungen sowie optionales Zubehör für Montage und Anschluss zur Verfügung. Die gesamte Konstruktion der Lamellenklappe besteht im wesentlichem aus nichtbrennbaren Kalziumsilikatplatten. Die Klappenbätter (Lamellen) verfügen zusätzlich über eine integrierte Dichtung für den Kaltrauch. Der Stellenantrieb und das optionale Kommunikationsmodul sind innerhalb der temperaturbeständigen Antriebseinhausung aufgebaut, um den Funktionserhalt bei erhöhter Betriebstemperatur sicherzustellen. Die Lamellen-Entrauchungsklappe ERLK-multi verfügt über eine MA- und HOT400/30*-Klassifizierung, dadurch wird sichergestellt, dass die Klappenblätter in den ersten 25 Minuten eines Brandfalles noch ihre Position verändern können. Auf diese Weise lässt sich die Verrauchung während oder nach eines Brandes steuern. Die Entrauchungsklappe darf, bezogen auf Ihre Achsenlage, vertikal oder horizontal eingebaut werden. Die Entrauchungsklappe ist wartungsfrei.

Eigenschaften der Entrauchungsklappe "ERLK(ER)-multi":

- Feuerwiderstand bis El 120 S
- Konformität mit der harmonisierten Produktnorm EN 12101-8
- Luftdichtheit geprüft bei 1500 Pa*
- Geprüft nach EN 1366-10
- Zyklusprüfung: 10.000 Zyklen
- Freie Abströmfläche bis 2,3 m²
- Wartungsfreie Ausführung, Kontrollprüfung gemäß Anforderung
- Vorbereitet für Bus-Kommunikationsmodule
- Vielfältige Installationsmöglichkeiten
- Geringe Bautiefe (250mm)
- Geeignet zum Einbau in einer massiven Wand,
 Decke und Entrauchungsleitungen (single & multi) und
 Schachtkonstruktionen
- für Nass- und Trockeneinbau
- Klappe aus nicht brennbarem Kalziumsilikat
- Einbaulage (Achslage): 0 / 90 / 180 / 270°


*gilt für Größen von 200 x 200 bis 1000 x 1600


Klassifizierung gemäß Produktnorm EN 12101-8 und EN 13501-4

Einbausituation	Klassifizierung	Abmessung [B x H]
Massive Wand oder Decke, Tragkonstruktion ≥ 100 mm in Verbindung mit Beton, Porenbeton, Rohdichte ≥ 500 kg/m³, Abdichtung mittels Mörtel oder Weichschott ≥ 140 kg/m³ Einbaulage: 0 / 90 / 180 / 270°	EI 90 (v _{ew} h _{ow} i⇔o) S 1500 C ₁₀₀₀₀ H0T400/30 AA/MA multi	200 × 200 mm ≤ ERLK-multi ≥ 1000 × 1600 mm
Vertikale und horizontale Entrauchungsleitungen oder Schächte in Verbindung mit Promatect LS ≥ 35 mm, Promatect L500 ≥ 40mm, Promatect AD ≥ 40 mm Mauerwek, Beton oder Betonsteine Einbaulage: 0 / 90 / 180 / 270°	EI 90/120* (v _{ed} h _{od} i⇔o) S 1500 C ₁₀₀₀₀ H0T400/30 AA/MA multi	200 × 200 mm ≤ ERLK-multi ≥ 1000 × 1600 mm
Vertikale und horizontale Entrauchungsleitungen oder Schächte in Verbindung mit Promatect LS ≥ 35 mm, Promatect L500 ≥ 40mm, Promatect AD ≥ 40 mm Mauerwek, Beton oder Betonsteine Einbaulage: 0 / 90 / 180 / 270°	EI 90/120* v _{ed} h _{od} i⇔o) S 1000 C ₁₀₀₀₀ AA/MA multi	200 × 200 mm ≤ ERLK/ER-multi ≥ 1200 × 2400 mm
Massive Wand, Tragkonstruktion ≥ 100 mm in Verbindung mit Beton, Porenbeton, Rohdichte ≥ 500 kg/m³ Ohne zusätzliche Abdichtung Einbaulage: 0 / 90 / 180 / 270°	EI 90 (v _{ew} i⇔o) S 1500 C ₁₀₀₀₀ H0T400/30 AA/MA multi	200 x 200 mm ≤ ERLK/ER-multi ≥ 1000 x 1600 mm

^{*}Installation an El 120 zertifizierten Entrauchungsleitungen (multi compartment) mit El 120 Klassifikation für das Leitungssystem.

5.6.1. AUFBAUSKIZZE ENTRAUCHUNGSKLAPPE ERLK(ER)-MULTI

TECHNISCHE DATEN

Ausführung	Entrauchungsklappe in Lamellenausführung, Type ERLK-multi & ERLK/ER-multi		
Beschreibung	Entrauchungsklappe für Mehrfachabschnitte zur Ableitung von Wärme und Rauch		
Abmessungen	ERLK-multi: [Bn x Hn] min. 200 x 200 mm bis max. 1200 x 2400 mm ERLK/ER-multi: [Bn x Hn] min. 200 x 200 mm bis max. 1000 x 1600 mm		
CE-Kennzeichnung	lt. europäischer harmonisierter Produktnorm EN 12101-8, IBS Institut fur Brandschutztechnik und Sicherheitsforschung GmbH mit Identifkation Nr.: 1322-CPR-37184/06 und 07		
Prüfbericht-Zusammenfassung und Klassifizierungsbericht	Nr.: 320080508-A, Rev2 vom 04.10.2022 / IBS – Institut für Brandschutztechnik und Sicherheitsforschung GmbH, Petzoldstrasse 45, A-4017 Linz		
Klassifizierung	ERLK-multi 200x200 bis 1000x1600 mm: EI 90/120 (v_{edw} h_{odw} i \leftrightarrow o) S 1500 C_{10000} HOT400/30 AA/MA multi ERLK-multi 1000x1600 bis 1200x2400 mm: EI 90/120 (v_{ed} h_{od} i \leftrightarrow o) S 1000 C_{10000} AA/MA multi ERLK/ER-multi 200x200 bis 1000x1600 mm: EI 90 (v_{ew} i \leftrightarrow o) S 1500 C_{10000} HOT400/30 AA/MA multi (siehe Leistungserklärung-DOP)		
Leckage Klappenblätter, Gehäuse	geschlossene Klappenblätter Klasse 2, Gehäuse Klasse C		
Sicherheitsposition	offen / geschlossen Stellung		
Auslösung	elektrische Fernauslösung		
Verwendung	zur Verwendung in Verbindung mit maschinellen Rauch- und Wärmeabzugsanlagen sowie Druckbelüftungsanlagen		
Installation für den Einbau in massive Wand, Decke, Entrauchungsleitungen (single & multi) und Schachtkonstruktion (siehe Leistungserklärung-DOP)			
Einbaulage	(Achslage): 0 / 90 / 180 / 270°		
Arbeitstemperatur / Umgebungsbedingungen	–20 °C bis +50 °C nur für den Innenbereich geeignet, zur Verwendung in lüftungstechnischen Anlagen		
Nennspannung / Nennleistung	24V AC/DC oder 230V AC, max. 15W		
Stellantrieb	Belimo BEN, BEE, BE, BEE+BEE, BE+BEN, BE+BEE		
Laufzeit	BEN: < 30 sek. / BEE & BE: < 60 sek.		
Stellungsanzeige / Endschalter	im Stellantrieb integriert, Schaltleistung: 1mA3A (0.5A induktiv), max. 250V AC		
Zyklus- / Dauertest	10.000 Zyklen		
Wartung / periodische Kontrollprüfung	wartungsfreie Arbeitsweise / halbjährliches Überprüfungsintervall empfohlen, jedoch mind. 1 x jährlich durchzuführen gemäß gesetzlichen Anforderungen		
Zubehör	Anschlussflansch, Abdeckgitter, Befestigungsset, Montageplatte fur Kommunikationsmodule		

Wartungsfreie Brandrauch-Steuerklappe

5.7. BRANDRAUCH-STEUERKLAPPE

Eckige Entrauchungsklappe, Type EK 90, nach EN 12101-8 für maschinelle Anlagen zur Entrauchung, Entlüftung und Zuluftzuführung mehrerer oder einzelner Brandbereiche, Brandabschnitte oder Räume. Gehäuse und Absperrklappenblatt aus hochtemperaturbeständigem, abriebfestem Kalziumsilikat. Mit Kantenschutzprofilen, Anschlussbohrungen, Antriebsachsen aus Edelstahl und mit elektrischem Antriebsmotor. Mit Spezialdichtungen zum Öffnen der Entrauchungsklappen auch nach 25 Minuten Brandbeanspruchung. Zum Einbau in massiven Wänden und Decken mit Mörtel oder Mineralwolle, in leichten Trennwänden und an und zwischen Entrauchungsleitungen.

Feuerwiderstandsdauer:

EI90 (v_{edw} , h_{odw} , i <-> o) S 1500 C $_{mod}$ H0T400/30 MA multi

Antriebe:

M1 = 24V AC/DC M2 = 230V AC

5.8. STEUERUNGSTECHNIK

5.8.1. SCHALTSCHRANK DRUCKBELÜFTUNG (DBA) AUFENTHALTSKONZEPT

Der Schaltschrank bildet die Steuerzentrale der Druckbelüftungsanlage. Alle für die Druckerzeugung relevanten Funktionen werden von dieser Steuerzentrale ausgeführt. Schaltschrank gem. ÖNORM F3001 und TRVB 112 S, 2020 aus Stahlblech. Vollautomatische Mess-, Steuer- und Regelungsanlage zur Ansteuerung der Druckbelüftungsanlage inkl. deren Komponenten, mittels programmierter Industrie SPS. Auslösung über Rauchmeldesignal oder Alarmeingang von der BMZ.

Der DBA-Schaltschrank wird anschlussfertig, mit Anspeisung und Abgängen auf Reihenklemmen verdrahtet ausgeliefert.

- Visualisierung mittels Farb-Touchscreen in der Schaltschranktüre
- Benachrichtigung bei Anlagenstörung via GSM-Modul (SIM-Karte bauseits)

Schaltschrank

- Integrierter DBA-Controller für Meldungsübergaben an BMZ
- Meldeleuchten Rot, Grün, Gelb (Alarm, Störung, Betrieb)
- Brandalarmmeldung
- Summenstörmeldung
- Phasenüberwachung
- Automatenfall
- Betriebs- und Störmeldung Ventilatoren
- Abgang-Überwachung Ausfall Steuersicherung
- Überwachung Betriebsartenschalter-Stellung-AUTO
- Motorschutz IN-Überwachung
- Überwachung Übertragungswege
- Geprüft gem. TRVB 112 S, 2020 Anhang 6
- Prüfnummer: 21-IB-6043-RÖ von akkreditierter Prüfstelle für Brandschutztechnik

Komponenteneinbindung:

- Ventilator
- AUL-Klappe
- Kanalrauchmelder
- Druckregelklappe
- Drucksensoren
- Handauslösetaster (orange)
- Hausalarmtaster (blau)
- Blitzleuchte
- Sirene
- Feuerwehrtableau
- Evakuierungsfahrt Aufzugsmeldung

Abströmkomponenten:

- Lichtkuppel (USV-Pufferung)
- Lamellenfenster (USV-Pufferung)
- Windwürfel

Zusatzoptionen:

- Lüftungsfunktion (Wind- und Regensensor, Lüftungstaster)
- RFK-Ausstieg (Schlüsselschalter)
- Abgänge für Freilauftürschliesser

ENTRAUCHUNGSANLAGEN

34

.

RAUCHFREIHALTUNG

RAUCHVERDRÄNGUNG DURCH DRUCKBELÜFTUNGSANLAGE (DBA) GEMÄSS TRVB 112 S

ERHALTUNG EINER RAUCHFREIEN SCHICHT DURCH RAUCH- UND WÄRMEABZUGSANLAGE (RWA) GEMÄSS TRVB 125 S

NATÜRLICHE RAUCHABFUHR DURCH AUFTRIEB BRANDRAUCHENTLÜFTUNG (BRE) GEMÄSS TRVB 125 S MECHANISCHE RAUCHAB-FUHR DURCH VENTILATOREN BRANDRAUCHABSAUGUNG (BRA) GEMÄSS TRVB 125 S

RAUCHVERDÜNNUNG

BRANDRAUCHVERDÜNNUNGSANLAGEN (BRV) GEMÄSS ÖNORM H 6029

> RAUCHABZUG IN STIEGENHÄUSERN GEMÄSS TRVB 111 S

RAUCHABLEITUNGSANLAGEN (RAA) GEMÄSS TRVB 125 S – ANHANG 7 SONSTIGE ANLAGEN, DIE KEINE RAUCHFREIHALTUNG BEWIRKEN (Z. B. NACH OIB-RICHTLINIE 2.2)

Quelle: TRVB 125 S

CO-WARNANLAGEN

Quelle: ÖNORM M 9419

6. Schleusenbelüftungssysteme

Eine Schleusenbelüftung dient zur Rauchfreihaltung geschützter Bereiche, d.h. zur Rauchfreihaltung der Fluchtwege.

Bei einem Brand wird bei geschlossenen Türen ein Über- • Die Schleusenbelüftung (Aufbau, Funktion, Leistungsdruck in der Schleuse aufgebaut und das Eindringen von Rauch verhindert. Bereits eingedrungener Rauch wird durch die hohe Luftwechselrate ausgespült. Die Schleuse sowie der angrenzende Fluchtweg können somit rauchfrei gehalten werden.

- daten) muß dem Baubescheid sowie dem Brandschutzkonzept entsprechen!
- Es ist dringend erforderlich die technische Ausführung der Schleusenbelüftung mit dem Fachplaner sowie der abnehmenden Stelle bereits im Vorfeld abzustimmen!
- Die Abnahme der Anlage durch eine akkreditierte Prüfstelle hat bauseitig durch den Betreiber zu erfolgen!

6.1. Auslegungskriterien

Luftwechselrate: Grundsätzlich ist ein min. 30-facher stündlicher Luftwechsel erforderlich.

Schleusenüberdruck: 35 bis max. 50 Pa. Achtung, Türöffnungskräfte von 100 N dürfen nicht überschritten werden!

6.1.1. ZULUFTKRITERIEN

- Die Außenluft-Ansaugung muss grundsätzlich aus dem Freien erfolgen.
- Im gesamten Leitungsverlauf dürfen keine Brandschutzklappen eingebaut werden. Luftleitungen welche durch andere Brandabschnitte führen, sind in der Brandwiderstandsklasse EI90 auszuführen.
- Der Schleusenbelüftungsventilator wird vorzugsweise in der Schleuse (Deckenmontage) montiert, und muss keiner Temperaturklasse entsprechen.

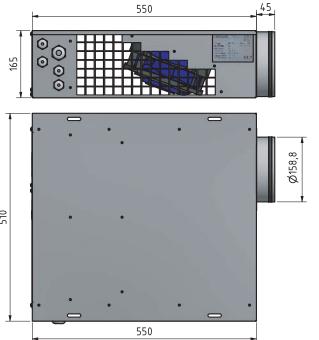
6.1.2. ABLUFTVARIANTEN

- Überströmung in die Garage: Die Fortluft der Schleuse wird mittels Überströmdurchführungen in die Garage geleitet. Diese sind mit einer Brandschutzklappe sowie einer Kaltrauchsperre ausgestattet. Auf eine ausreichende und dem Schleusenüberdruck entsprechende Dimensionierung ist zu achten.
- Fortluftleitung ins Freie: Die Fortluft wird mittels einer Luftleitung auf kürzestem Wege und an geeigneten Stelle ins Freie geleitet. Es kann ein zusätzlicher Abluftventilator erforderlich sein. Im gesamten Leitungsverlauf dürfen keine Brandschutzklappen eingebaut werden. Luftleitungen welche durch andere Brandabschnitte führen, sind in der Brandwiderstandsklasse El90 auszuführen

6.2. Normen und Richtlinien

Auszug aus ÖNORM H 6029: Für Flucht- und Rettungswege ... Schleusen ... ist ein 30-facher stündlicher Luftwechsel erforderlich.

Auszug aus OIB 2.2: Eine wirksame Lüftung (für Schleusen) muss vorhanden sein.


Auszug aus einem Baubescheid: "... Für die Schleusen ist eine mechanische Lüftungsanlage gemäß ÖNORM H 6029 mit einem mindestens 30-fachen stündlichen Luftwechsel und einem Überdruck von 35 – 50 Pa, angesteuert automatisch über Brandrauchsensoren (garagenseitig) und händisch (stiegenhausseitig) auszuführen ..."

6.3. Schleusenbelüftung SBB-Kompakt

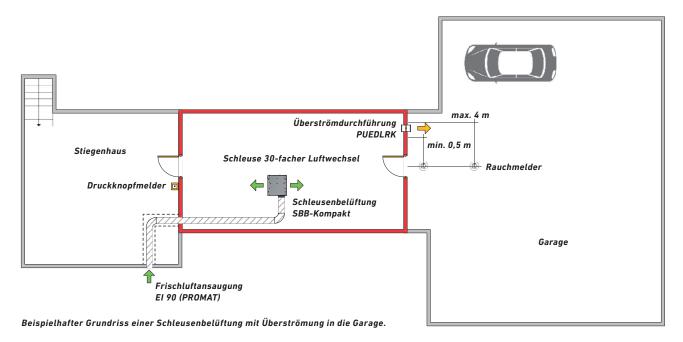
Die Schleusenbelüftung SBB-Kompakt ist eine platzsparende und kostengünstige Alternative zu konventionellen Schleusenbelüftungssystemen.


Der drehzahlregelbare EC-Ventilator sowie die Schleusensteuerung sind gemeinsam in einer rahmenlosen Blechkonstruktion verbaut. Die flache Kastenbauweise eignet sich besonders gut für die Deckenmontage bei geringen Raumhöhen. Der drehzahlregelbare Ventilator ermöglicht die optimale Anpassung von Volumenstrom und Raumüberdruck an die Schleuse. Erhöhte Leitungsverluste sowie Undichtigkeiten der Schleuse können ausgeglichen werden.

- kompakte Bauweise
- Decken- oder Wandmontage
- Luftleitungsanschluss DN 160
- Ventilatordrehzahl einstellbar
- Volumenstrom bis 850 m³/h (200 Pa. ext)
- integrierte Steuerung
- · Auslösung über:
 - Druckknopfmelder
 - Rauchmelder oder Brandmeldeanlage
- Rückmeldungen (potfreier Kontakt):
 - Ausgelöst
 - Sammelstörung

6.3.1. LUFTLEISTUNGSKENNLINIE

I: 3940 - 4750 n/min II: 3410 n/min III: 2820 n/min IV: 1880 n/min


6.3.2. TECHNISCHE DATEN

- Gehäuse: Stahl verzinkt
- Abmessungen (LxBxH): 550x510x165 mm
- Rohranschluss: DN 160
- Volumenstrom: bis 850 m³/h (bei 200 Pa.
- zul. Umgebungstemperatur: 0 bis 40°C
- Spannung: 230VAC 50Hz
- Nennleistung: 206 W
- Stromaufnahme: max. 2,18 A

6.3.3. ZUBEHÖR

- Druckknopfmelder
- Rauchmelder

6.3.4. SCHEMATISCHER AUFBAU SCHLEUSENBELÜFTUNG SBB-KOMPAKT

6.3.5. KOMPONENTEN

- Schleusenbelüftung SBB-Kompakt
- Luftleitung
- Überströmdurchführung
- Druckknopfmelder (Handauslöser)
- Optischer Rauchmelder

6.3.6. ANWENDUNGSBEISPIEL SCHLEUSE CA. 6,5 $\rm M^2,$ RAUMHÖHE 2,5 M, LW 30-FACH $\sim\!500~\rm M^3/H$

- Schleusenbelüftung SBB-Kompakt
- Pichler Überströmdurchführung
 2 Stk. PUEDLRK, NW 250 mm
- Optischer Rauchmelder
- Handauslöser
- Inbetriebnahme Schleusenbelüftung

6.4. Schleusenbelüftung Konventionell

Beim konventionellen Schleusenbelüftungssystem sind Ventilator und Steuerung voneinander getrennte Komponenten. Dieses System kann besser an die jeweiligen Gegebenheiten und Anforderungen der Schleuse angepasst werden. Dadurch können auch Schleusenbelüftungen mit sehr hohen Volumenströmen oder mit mehreren Ventilatoren umgesetzt werden.

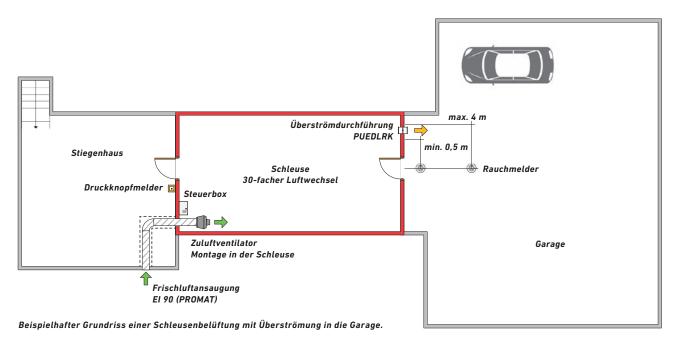
- freie Positionierung der Komponenten
- auch sehr hohe Volumenströme
- mehrere Ventilatoren möglich
- separater Steuerschrank
- Auslösung über:
 - Druckknopfmelder
 - Rauchmelder oder Brandmeldeanlage
- Rückmeldungen (potfreier Kontakt):
 - Ausgelöst
 - Sammelstörung

6.4.1. TECHNISCHE DATEN STEUERUNG

- Kompakt-Steuerschrank für Wandmontage
- Abmessungen (BxHxT): 400x400x210 mm
- Gehäuse: Stahlblech RAL 7035
- Schutzart: IP 54
- zul. Umgebungstemperatur: 0 bis 40°C
- Anschluss: 230VAC 50Hz max. 10A
- Ventilatoren bis 1000 VA
- für Leitung in Ausführung Funktionserhalt geeignet

6.4.2. ZUBEHÖR

- Druckknopfmelder
- Rauchmelder



Steuerschrank

Ventilator

6.4.3. SCHEMATISCHER AUFBAU SCHLEUSENBELÜFTUNG KONVENTIONELL

6.4.4. KOMPONENTEN

- Ventilator
- Luftleitung
- Steuerschrank
- Überströmdurchführung
- Druckknopfmelder (Handauslöser)
- Optischer Rauchmelder

6.4.5. ANWENDUNGSBEISPIEL SCHLEUSE CA. 6,5 M^2 , RAUMHÖHE 2,5 M, LW 30-FACH ~500 M^3/H

- Rohrventilator Metall Etaline EL, NW 200 mm
- Muffe MF, verzinkt für Formstücke, NW 200 mm
- Ausblasstutzen AG, verzinkt gerade, NW 200 mm
- Pichler Überströmdurchführung
 2 Stk. PUEDLRK, NW 250 mm
- Optischer Rauchmelder
- Handauslöser
- Steuerschrank
- Inbetriebnahme Schleusenbelüftung

6.5. Pichler Überströmdurchführung PUEDLRK

6.5.1. PRODUKTBESCHREIBUNG

Bestehend aus einem Rohrgehäuse aus verzinktem Stahlblech, einer Brandschutzklappe El90(S), einer Membran-Kaltrauchsperre und beidseitigem Aluminiumabdeckgitter. Die Überströmdurchführung wird fertig montiert geliefert. Optional können Abdeckgitter und Rohrgehäuse in allen RAL-Farben pulverbeschichtet werden.

Der Einbau muss gemäß den Einbaubedingungen der Brandschutzklappe und der ÖNORM H 6031 erfolgen. Dabei ist darauf zu achten, dass das Verschlusselement innerhalb der Trennwand eingebaut wird. Auf die Erfordernis der Anordnung der Überströmelemente in Boden- oder Deckennähe ist zu achten.

Die Einschub-Brandschutzklappe ist einsetzbar für Wandstärken ab 100 mm und für folgende Einbauvarianten zugelassen:

- Massiv- und Leichtbauwände ab 100 mm
- Weichschottsysteme ab 100 mm
- Mörtelschotts ab 100 mm Wanddicke
- Prottelith Installationsblöcke ab 200 mm

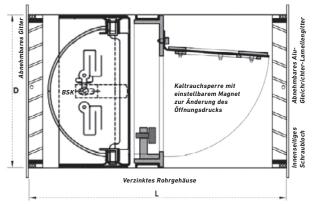
6.5.2. SPEZIFIKATION BRANDSCHUTZKLAPPE

Einschub- Brandschutzklappe INLAP EI 90 (ve, ho, i↔o) S für den Einbau bzw. Nachrüstung in Luftleitungen aus Wickelfalzrohren. Geprüft gemäß ÖNORM EN 1366-2, ÖNORM H 6025, klassifiziert gemäß ÖNORM EN 13501-2 und zugelassen gemäß ÖNORM EN 15650 (Zertifikat der Leistungsbeständigkeit 1139-CPR-1046/12).

Runde Ausführung, bestehend aus einem weiß pulverbeschichteten Gehäuse mit außenliegendem Dämmschichtbildner und zwei umlaufenden Silikon U-Lippendichtungen. Das zweiflügelige, mehrschichtige Klappenblatt aus Nirosta wird durch die thermische Auslöseeinrichtung (Schmelzlot) in der Stellung "offen" gehalten.

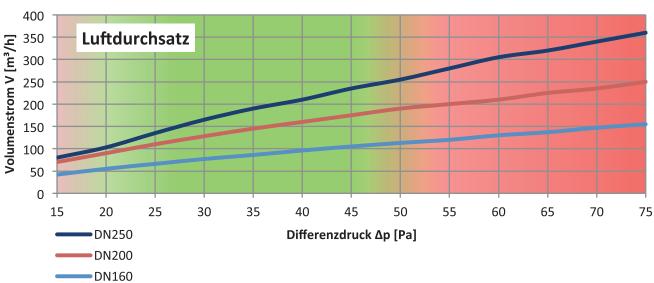
Bei Temperatureinwirkung löst die thermische Auslöseeinrichtung und das zweiflügelige Klappenblatt wird durch Federkraft in die Sicherheitsstellung "geschlossen" gebracht und der im mehrschichtigen Klappenblatt integrierte Dämmschichtbildner expandiert.

6.5.3. SPEZIFIKATION KALTRAUCHSPERRE


Kaltrauchsperre LRK-MH für den Einbau bzw. Nachrüstung in Luftleitungen.

Runde Ausführung, bestehend aus einem Kunststoffgehäuse mit U-Lippendichtung und einem Verschlusselement mit Silikon-Membran, welches durch ein verstellbares Haltemagnet die Kaltrauchsperre bis zu einem Differenzdruck von ca. 10 Pa in Strömungsrichtung geschlossen hält.

Überströmdurchführung PUEDLRK



ABMESSUNGEN

Туре	Länge [mm]	Durchmesser [mm]
PUEDLRK 160	280	160
PUEDLRK 200	340	200
PUEDLRK 250	410	250

Lieferbar in den Durchmessern 160, 200 und 250 mm.

 $Der\ Luftdurch satz\ wurde\ in\ einem\ geschlossenem\ System,\ ohne\ zus\"{a}tzlicher\ Leckagen,\ wie\ etwa\ T\"{u}rfugen,\ gemessen.$

Δp [Pa]	15	20	25	30	35	40	45	50	55	60	65	70	75
V DN160 [m³/h]	42	55	66	77	86	96	105	113	120	130	137	147	155
V DN200 [m ³ /h]	70	90	110	128	145	160	175	190	200	210	225	235	250
V DN250 [m ³ /h]	80	103	135	165	190	210	235	255	280	305	320	340	360

ENTRAUCHUNGSANLAGEN

RAUCHFREIHALTUNG

RAUCHVERDRÄNGUNG DURCH DRUCKBELÜFTUNGSANLAGE (DBA) GEMÄSS TRVB 112 S

ERHALTUNG EINER RAUCHFREIEN SCHICHT DURCH RAUCH- UND WÄRMEABZUGSANLAGE (RWA) GEMÄSS TRVB 125 S

NATÜRLICHE RAUCHABFUHR DURCH AUFTRIEB BRANDRAUCHENTLÜFTUNG (BRE) GEMÄSS TRVB 125 S MECHANISCHE RAUCHAB-FUHR DURCH VENTILATOREN BRANDRAUCHABSAUGUNG (BRA) GEMÄSS TRVB 125 S

RAUCHVERDÜNNUNG

BRANDRAUCHVERDÜNNUNGSANLAGEN (BRV) GEMÄSS ÖNORM H 6029

> RAUCHABZUG IN STIEGENHÄUSERN GEMÄSS TRVB 111 S

RAUCHABLEITUNGSANLAGEN (RAA) GEMÄSS TRVB 125 S – ANHANG 7 SONSTIGE ANLAGEN, DIE KEINE RAUCHFREIHALTUNG BEWIRKEN (Z. B. NACH OIB-RICHTLINIE 2.2)

Quelle: TRVB 125 S

CO-WARNANLAGEN

Quelle: ÖNORM M 9419

7. CO-Warnanlagen

Eine CO-Warnanlage hat die Aufgabe den jeweiligen CO-Gehalt in Teilabschnitten einer Garage mittels Messfühlern zu überwachen. Die Aufteilung der Messfühler ist je nach Größe der Garage unterschiedlich. Gemäß OIB-Richtlinie 3 Hygiene, Gesundheit und Umweltschutz OIB-330.3-009/15 sind Garagen natürlich oder mechanisch so zu lüften, dass im Regelbetrieb ein Halbstundenmittelwert für Kohlenstoffmonoxid (CO) von 50 ppm nicht überschritten wird.

7.1. GARAGENUTZFLÄCHEN

Garagen mit 50 m² bis 250 m² Nutzfläche

Für Garagen mit mehr als 50 m² und nicht mehr als 250 m² Nutzfläche gilt die Anforderung als erfüllt, wenn

- eine natürliche Querdurchlüftung über Zu- und Abluftöffnungen von insgesamt mindestens 1000 cm² Querschnittsfläche pro Stellplatz vorhanden ist oder
- eine mechanische Lüftung mit einem mindestens 0,5fachen stündlichen Luftwechsel sichergestellt ist oder
- jeder Stellplatz direkt aus dem Freien ohne Fahrgasse anfahrbar ist und Lüftungsöffnungen von mindestens 200 cm² Querschnittsfläche pro Stellplatz vorhanden sind.

Garagen mit mehr als 250 m² Nutzfläche

Garagen mit mehr als 250 m² Nutzfläche sind mit adäquaten Messeinrichtungen auszustatten, die bei Überschreiten einer CO-Konzentration von 250 ppm über einen Zeitraum von mehr als einer Minute Alarmsignale auslösen und Maßnahmen zur Reduktion der CO-Konzentration (wie z.B. Aktivierung einer mechanischen Lüftungsanlage) einleiten.

Diese Messeinrichtungen können jedoch entfallen, wenn oberirdische Geschoße und das erste unterirdische Geschoß mit natürlichen Rauch- und Wärmeabzugseinrichtungen gemäß Tabelle 2 der OIB-Richtlinie 2.2 "Brandschutz bei Garagen, überdachten Stellplätzen und Parkdecks" ausgestattet sind. Diese Öffnungen müssen so situiert sein, dass eine Querdurchlüftung gewährleistet ist.

7.2. CO-SCHWELLWERTE

Zur Überwachung und Sicherstellung einer NICHT gesundheitsgefährdeten Atemluft in der Garage sind von der ÖNORM Schwellwerte vorgegeben wobei die CO-Warnanlage bestimmte Anlagenfunktionen ausführen muss.

7.2.1. 50 ppm CO

Der Garagenventilator wird in Betrieb genommen. Bei Unterschreiten des Schwellwertes läuft der Ventilator 5 min nach, um die vollständige Entlüftung der Garage zu gewährleisten.

7.2.2. 100 ppm CO

Die Garagenwarnschilder werden in Betrieb genommen und schalten bei Unterschreiten der Schaltwerte unverzüglich ab.

7.2.3. 250 ppm CO

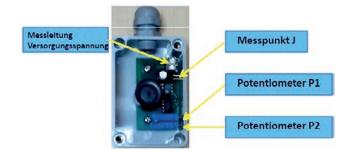
Die Signalhupen in der Garage werden aktiviert, schalten bei Unterschreiten der Schaltschwelle unverzüglich ab, können jedoch auch schon vorher mittels der Hupenquittiertaster am Schaltschrank und der externen Tasten rückgestellt werden.

7.3. AUSSENTEILE FÜR CO-WARNANLAGEN

7.3.1. MESSFÜHLER

Elektrochemischer, temperaturkompensierter Messfühler für die Aufputzmontage zur Erfassung von Kohlenmonoxid in der zu messenden Luft laut ÖNORM M 9418.

Messprinzip: elektrochemische Oxidation **Überwachungsbereich:** 0-300 ppm CO **Versorgungsspannung:** 14-28 VDC


Messsignal: 4-20 mA

Verbindungsleitung: ÖCUY-OB 2x1

Gehäuse: Kunststoff

Farbe: hellgrau glänzend (RAL7035) **Abmessungen:** B x H x T 54 x 80 x 36 mm

Die Versorgungsspannung des CO-Messfühlers erfolgt direkt über die Messleitung durch das Auswertegerät.

Bei Beaufschlagung der Messzelle mit Oppm CO-Prüfgas liegt am Messpunkt J eine Spannung von 40 mV an. Zur Justierung eventueller Abweichungen dient das Potentiometer P2. Bei Beaufschlagung der Messzelle mit 300ppm CO-Prüfgas liegt am Messpunkt J eine Spannung von 200 mV an. Zur Justierung eventueller Abweichungen dient das Potentiometer P1.

Die Beaufschlagung hat mit einer Messgasmenge von ca. 1- max.1,5l/min zu erfolgen.

7.3.2. FEUERWEHRSCHALTER

Der Feuerwehrschalter ist in einen roten Sicherheitskasten aus Stahlblech eingebaut und wird mit einer Echtglasscheibe und einem Nothammer für Aufputzmontage geliefert. Das Gehäuse ist mit einem seitlichem Schloss versperrbar.

Schalterstellungen: HAND-0-AUTO

Abmessungen: B x H x T 130 x 180 x 96 mm

Schutzart: IP55 Fabrikat: FISCHER ET

Type: FRFS

Funktionsweise:

Der Garagenlüftungsschalter dient zur Übersteuerung der Anlage. Folgende Schalterstellungen sind (durch befugtes Personal, wie z.B. Feuerwehr) wählbar:

- AUTO: Die Steuerung der Lüftung erfolgt wie oben beschrieben.
- 0: Der Ventilator läuft nicht an (auch bei Anforderung durch das Auswertegerät).
- HAND: Der Ventilator läuft unabhängig vom CO-Gehalt in der Luft an.

7.3.3. SIGNALHUPE UND QUITTIERTASTER

Kleinhupe in Dosenform ohne Trichter aus hellgrauem wiederverwertbaren Kunststoff für die Wandmontage.

Schalldruckpegel: 98 dB(A) in 1 m Abstand

Nennspannung: 24 VAC Nennstrom: 0,1 A

Einpoliger Taster mit automatischer Rückstellung in Pressstoffgehäuse für die Aufputzmontage zur Quittierung von anstehenden Hupenalarmen.

Nennspannung: 230 VAC Nennstrom: 0,03 A

7.3.4. WARNSCHILDER

Vollelektronisches Warntransparent bestehend aus einem Aluminium-Umlaufrahmen und einer beschrifteten Kunststoffplatte. Im Alarmfall einseitig aufleuchtende Schrift und Blinkpunkt. Selbständige Erzeugung der Blinkfrequenz mittels eingebauter Blinkelektronik.

EINFAHRT VERBOTEN VERGIFTUNGSGEFAHR

Text: "EINFAHRT VERBOTEN VERGIFTUNGSGEFAHR"

Schrifthöhe: 20 cm

Abmessungen: B x H x T 2000 x 260 x 14 mm **Versorgungsspannung:** 24 VAC/DC (bipolar)

Anschlussleistung: 7,8 W

Elektroanschluss: rechts über ausgeführtes

2-pol Kabel (90 cm)

ZUTRITT VERBOTEN

Text: "ZUTRITT VERBOTEN VERGIFTUNGSGEFAHR"

Schrifthöhe: zweizeilig 7 cm

Abmessungen: B x H x T 700 x 200 x14 mm **Versorgungsspannung:** 24 VAC/DC (bipolar)

Anschlussleistung: 3 W

Elektroanschluss: rechts über ausgeführtes

2-pol Kabel (90 cm)

MOTOR ABSTELLEN GARAGE VERLASSEN

Text: "MOTOR ABSTELLEN GARAGE VERLASSEN"

Schrifthöhe: 20 cm

Abmessungen: B x H x T 2000 x 260 x 14 mm **Versorgungsspannung:** 24 VAC/DC (bipolar)

Anschlussleistung: 7,8 W

Elektroanschluss: rechts über ausgeführtes

2-pol Kabel (90 cm)

Auch in beidseitig aufleuchtender Schrift und Blinkpunkt erhältlich.

MOTOR ABSTELLEN GARAGE VERLASSEN

Text: "MOTOR ABSTELLEN GARAGE VERLASSEN"

Schrifthöhe: 7 cm

Abmessungen: B x H x T 700 x 200 x 14 mm **Versorgungsspannung:** 24 VAC/DC (bipolar)

Anschlussleistung: 3 W

Elektroanschluss: rechts über ausgeführtes

2-pol Kabel (90 cm)

Auch in beidseitig aufleuchtender Schrift und Blinkpunkt erhältlich.

7.3.5. AUSWERTEGERÄTE

7.3.5.1. FRMG1

Kohlenmonoxid Mess-, Anzeige- und Auswertegerät zur Messung und Überwachung des Kohlenmonoxidanteiles in der zu Umgebungsluft mittels 1-4 Messfühler. Zuteilungsmöglichkeit für 4 Brandabschnitte möglich. Umwandlung und Anzeige des 4-20 mA- Analogsignals der CO-Messfühler FRFCO mittels 7-Segmentanzeige, ablesbar in ppm (parts per million=1cm³/m³) CO. Messbereich: 0-300 ppm CO, mit Anzeige über das oben

angeführte 3-stelliges Display.

Die Messung der einzelnen Fühler erfolgt permanent.

Digital einstellbare Parameter (Einstellung erfolgt über 4 Tasten an der Frontplatte):

- Fühleranzahl
- Schwellwerte
- Ventilatornachlaufzeit

Anzeigen:

- Höchster aktueller Messwert inkl. Fühlernummer (über die Tasten können auch die anderen Fühler abgefragt werden)
- Schwellwertzuordnung
- Ausgangsmeldung

Die Schwellwerte werden durch eine angeschlossene Relaiskarte logisch verarbeitet (Lüftungssteuerung, Warnschilder, Signalhupen und Hupenquittierung). Die Messleitungen der FRFCO-Messfühler werden auf Fühlerleitungsbruch und Kurzschluss permanent überwacht.

Bauform: 48x96 mm- Normgehäuse und Relaisausgangsplatine für Montageplatte **Anspeisung:** 24VAC über Relaiskarte

7.3.5.2. FRMG3

Kohlenmonoxid Mess-, Anzeige- und Auswertegerät zur Messung und Überwachung des Kohlenmonoxidanteiles in der zu Umgebungsluft mittels 1-21 Messfühler. Umwandlung und Anzeige des 4-20 mA- Analogsignals der CO-Messfühler FRFCO mittels 7-Segmentanzeige, ablesbar in ppm (parts per million=1cm³/m³) CO.

Messbereich: 0-300 ppm CO mit Anzeige über das oben angeführte 3-stelliges Display. Die Messung der einzelnen Fühler erfolgt permanent.

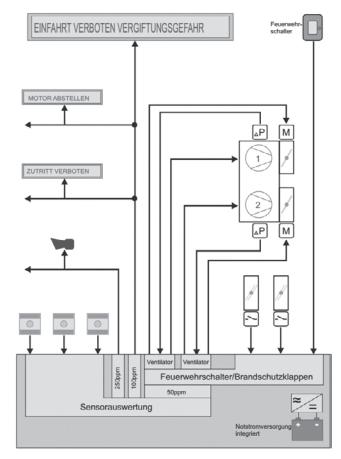
Digital einstellbare Parameter (Einstellung erfolgt über 4 Tasten an der Frontplatte):

- Fühleranzahl
- Schwellwerte
- Ventilatornachlaufzeit

Anzeigen:

- Höchster aktueller Messwert inkl. Fühlernummer (über die Tasten können auch die anderen Fühler abgefragt werden)
- Schwellwertzuordnung
- Ausgangsmeldung

Die Schwellwerte werden durch eine angeschlossene Relaiskarte logisch verarbeitet (Lüftungssteuerung, Warnschilder, Signalhupen und Hupenquittierung). Die Messleitungen der FRFCO-Messfühler werden auf Fühlerleitungsbruch und Kurzschluss permanent überwacht.


Bauform: 48x96 mm- Normgehäuse und Relaisausgangsplatine für Montageplatte **Anspeisung:** 24VAC über Relaiskarte

7.3.6. NETZERSATZANLAGE

Die Netzersatzanlage dient dazu, bei Ausfall der Spannungsversorgung die Warnschilder und die Signalhupe unverzüglich in Betrieb zu nehmen. Die Signalhupe kann wie bei "normal" Betrieb quittiert werden.

Nach Netzwiederkehr werden die Warneinrichtungen weggeschalten, und der Ventilator läuft für 5min, um eventuell vorhandenes CO vorsorglich zu entfernen.

Die Netzersatzakkus sind so ausgelegt, dass die Warneinrichtungen für die Zeit von 1 Stunde betrieben werden. Bei Erreichen des Tiefentladepunktes der Akkus (erfolgt nicht vor Ablauf 1 Std.) werden die Warneinrichtungen automatisch weggeschalten, um eine Zerstörung der Akkus zu verhindern.

8. Unser Service

Wir bieten Ihnen ein maßgeschneidertes Komplettsystem zu Ihrem Entrauchungskonzept inklusive sämtlicher lufttechnischer Komponenten und einer intelligenten Steuerungstechnik.

Unsere Mitarbeiter unterstützen Sie dabei bereits in der Planungsphase über den gesamten Projektverlauf hinweg und stehen Ihnen anschließend gerne für die kommenden Wartungstätigkeiten zur Verfügung.

IHRE VORTEILE

Effizient: Mit möglichst wenig Aufwand wird ein hoher Nährwert an die Wirtschaftlichkeit, sowohl im Einbau als auch im laufenden Betrieb. erzielt.

Funktional und bedienerfreundlich: Da unser System keine Lösung "von der Stange" ist, bietet es konzentriert den notwendigen und vor allem gewünschten Funktionsumfang. Reduzierter zeitlicher Aufwand für Inbetriebnahme- und Wartungsarbeiten durch unser integriertes Diagnosesystem mit der Option eines zusätzlichen Fernwartungsmoduls.

Intelligent: Durch intelligente Steuerungstechnik, vorausschauende Forschung und fortwährende Weiterentwicklung in unserer Testanlage.

Speziell. Freiraum durch Eigenproduktion:

Unsere Flexibilität in der Ausgestaltung der aufeinander abgestimmten Komponenten führt zu einer Vielzahl an Kombinationsmöglichkeiten und Lösungsvarianten besonders bei komplexeren Projekten und anspruchsvoller Architektur.

9. Simulations- und Testanlage

Wenn es um Brandschutzbestimmungen und die Sicherheit im Brandfall geht, zählt Österreich zu jenen Ländern, die besonders strenge Vorschriften und Standards haben. Die Einhaltung dieser Standards ist bei PICHLER höchstes Gebot. Denn hier zählen Sicherheit und Qualität. Deshalb wird auch in der Forschung mit den zuständigen Behörden, Prüfstellen und

Instituten eng kooperiert. Außerdem wird im PICHLER Brandschutz-Kompetenzzentrum mit einer topmodernen Simulations- und Testanlage für Entrauchungssysteme gearbeitet. Die Erkenntnisse, die durch die internen Studien und Testszenarien gewonnen werden, fließen direkt in die Entwicklungstätigkeiten ein.

Ihr Partner/Installateur:		

Für den Inhalt verantwortlich: J. Pichler Gesellschaft m.b.H. | Grafik und Layout: WERK1
Fotos: J. Pichler Gesellschaft m.b.H., © Matthias Buehner - Fotolia | Text: J. Pichler Gesellschaft m.b.H.
Alle Rechte vorbehalten | Alle Fotos Symbolfotos | Anderungen vorbehalten | Version: 02/2023 de/p

